Production planning follows the same basic principles in both SAP ECC and SAP APO. This chapter provides an overview of planning with the two systems. This is followed by a discussion of the advanced options available to you with APO.

2 An Overview of Production Planning with ECC and APO-PP/DS

Production planning in APO-PP/DS uses the same processes that are familiar from the SAP ECC system. It is based on master data records, specifically plants, material masters, bills of material (BOM), and routings (PP) or master recipes (PP-PI). Planning results in planned orders, which are converted into manufacturing orders for executing production. These may be either production orders (PP) or process orders (PP-PI).

Repetitive Manufacturing (REM) is also possible, whereby production is executed on the basis of planned orders.

2.1 Production Planning Functions

PP/DS is short for Production Planning and Detailed Scheduling. Of course, the objectives of this kind of planning did not originate with APO. Production planning in ECC pursues the same objective, that is, consistent, capacity-based planning. In ECC, these functions are found under Material Requirements Planning (MRP) and Capacity Requirements Planning (CRP).

The basic principles of planning in APO and ECC are outlined below, followed by a discussion of the advanced options in APO.
2.1.1 Material Requirements Planning

The goal of Material Requirements Planning (MRP) is to ensure material availability in good time and in sufficient quantities. Two different procedures can be used:

- **Material Requirements Planning**
 In this case, procurement planning is controlled by material requirements. The requirements consist of sales orders, planned independent requirements, dependent requirements, and so on. Planning is based on backward scheduling from the requirements date to ensure on-time availability.

- **Consumption-Based (Reorder Point) Planning**
 In this case, materials planning is based on consumption. Reorder point planning simply checks whether the available stock has fallen below a defined threshold value or reorder point. Whenever this happens, procurement is planned with forward scheduling.

As you can see, the two procedures are essentially different. Consumption-based planning is usually used for only low-value, non-critical materials (consumable material, for example), while MRP is used for precise planning. Consumption-based planning therefore only plays a secondary role in the context of advanced planning in APO-PP/DS.

MRP type
In ECC, you define the MRP procedure in the **MRP type** field in the material master. Typical entries in this field are **PD** for MRP or **VB** for reorder point planning. However, both these entries are irrelevant for planning materials in APO. If a material is planned in APO, it cannot be planned again in ECC. Therefore, you should select the entry **X0** as the MRP type to exclude it from planning in ECC.

There is no MRP type in the APO product master. Planning in APO is essentially "requirement-driven" (i.e., it is based on the MRP procedure described above) unless a different procedure is explicitly chosen by applying a corresponding heuristic.

The starting point for MRP is a requirement for a material in a plant. As a rule, this requirement is in the future. We proceed from the following assumption:

Material A is required in quantity B on date/at time C in plant D.
Think of how this applies to a sales order, for example. However, dependent requirements resulting from in-house production can also be formulated in this way.

With backward scheduling for material A in plant D, a suitable procurement element is generated in such a way that the availability date of this element corresponds to the requirements date. The start date of procurement therefore precedes the availability date, and the procurement lead time represents the time interval between these two dates (backward scheduling).

Scheduling of a procurement element depends on the procurement type:

- **In-House Production**
 A routing and a BOM or master recipe is required to produce a material in-house. The in-house production time is the sum total of the durations of the individual operations, plus any additional floats/time buffers.

- **External Procurement**
 If you want to procure a material from an external vendor or to transfer your stock from another location, you must schedule a delivery time.

In the system, these two procurement types correspond to the entries E for in-house production and F for external procurement on the MRP 2 view of the material master (see Figure 2.1). If you enter X here, both procurement types are permitted, but planning initially assumes in-house production.

![Figure 2.1 ECC Transaction "Change Material Master" (Transaction Code MM02, Material Master View "MRP 2" with Field Selection for Procurement Type)](image-url)
You can define the procurement type more precisely by specifying the special procurement type (Special procurement field). For example, you can configure external procurement as a stock transfer from another production location. With external procurement, you can define a vendor-specific delivery time and factor this in your planning.

With in-house production, various dates and times can be defined. The ECC manufacturing order contains both production dates and basic order start and finish dates. Floats separate these dates: the float before production separates the order start date and the production start date, while the float after production comes between the production finish date and the order finish date (see Figure 2.2).

In this context, we must point out the following basic difference between ECC and APO: APO-PP/DS ignores the float before production and the float after production, and APO orders don’t contain basic order start and finish dates. Therefore, you should always enter a scheduling margin key (for example, AP1) with a float before production and float after production both equal to zero for materials that are planned in APO (see Figure 2.3).
2.1.2 Multilevel Planning

With in-house production, you generally use multilevel planning, where the material is produced from other materials that must be available in time for the production process. You can refer to the BOM for information about the required materials. Since a BOM item may be the header of another BOM, planning may encompass several BOM levels. The objective of multilevel planning is therefore to create procurement elements at the right time across all relevant BOM levels (see Figure 2.4). The procurement dates for the assemblies and components are calculated from the BOM structure using backward scheduling from the requirements date of the finished product.

This enables operation-specific material staging.

Multilevel planning uses backward scheduling from the requirements date for the finished product. This means that the start dates for procurement of the required assemblies and components are calculated to ensure that production of the finished product can start on
time. The sum total of these times is referred to as the total replenishment lead time. This is distinct from the in-house production time, which refers only to the time taken to produce individual materials.

Problems may occur with your procurement plan if the requirements date is less than the end of the total replenishment lead time in the future. With backward scheduling, this corresponds to a situation in which the start date for assemblies or components (or even for the finished product itself) would have to be in the past.

Since the system does not create orders in the past, forward scheduling is generally used in this situation. With forward scheduling, the start date of the relevant order is the current date, while the end date is scheduled in the future as the start date plus the lead time of the order. This kind of order is therefore delayed because the requirements date that triggered the order (think of a secondary requirement, for example) cannot be covered in time.

In ECC requirements planning, exception messages normally alert you to this kind of problem. These messages indicate that procurement of a material will be delayed. These delays typically occur in lower-level assemblies, while procurement of the finished product still appears to be on schedule. The exception message is not normally propagated to the relevant finished product. It is the MRP con-
troller's responsibility to identify problematic supply chains using these exception messages and to solve the problem, for example, by changing procurement elements manually or by finding alternatives in the procurement process.

2.1.3 Material Planning and Capacity Planning

In material planning, procurement elements are created with dates that correspond to the requirements situation. This type of planning is based on the individual in-house production times or delivery times of the materials in question.

With externally procured materials, you therefore have to assume that the planned vendor will be able to deliver within the planned delivery time. If in doubt, confirm this with the vendor. You may find that you will need to switch to another vendor with a different delivery time.

The situation is more complex for materials produced in-house. In this case, material planning uses the MRP II concept. This means that material planning is initially based on infinite production capacities, with capacity planning following in a second, separate step. When an order is created, there is therefore no check to determine whether the required work centers or resources are available for the relevant period or are already fully occupied by another production process.

Capacity planning comprises the following steps: First, the available capacity at the work centers (or resources (PP-PI)) is established. For example, it is established that work center A is available for 40 hours each week.

The orders (planned orders or manufacturing orders), on the other hand, have certain capacity requirements, resulting from the routing (or master recipe (PP-PI)). The routing can be broken down into operations. Each operation is assigned a work center, where it can be executed. For example, operation 10 requires work center A for 10 minutes for each piece of the finished product. This means that work center A is required for 50 minutes if you have an order with an order quantity of five pieces. An order therefore contains not only the planned production start and end dates, but also the operations dates, including details of the required production resources, and, in addition, it formulates the corresponding capacity requirement.
The goal of capacity planning is to ensure that orders can be executed, in other words, that work centers are available when required. Capacity planning therefore compares the capacity requirement with the available capacity. Since a work center may naturally be required by different orders for completely different finished products, this comparison is normally carried out as work center-specific.

Scheduling

To ensure that a certain order can be executed at a certain time at a specific work center, the order is scheduled. A production resource can only be reserved by an order using scheduling. Scheduling can be performed interactively in a capacity planning table (or detailed scheduling planning board in APO) for individual orders, or it can be executed automatically as a background job. Problems associated with capacity planning can be extremely complex. For example, orders may involve several operations that require different resources. Successful scheduling of one operation at a resource may conflict with the dates of the other operations, and so on.

Bottleneck resources

What this means is that capacity planning is restricted to the planning of the bottleneck resources. You therefore must assume that no more than one resource from the routing actually needs to be checked for scheduling conflicts, and have to trust that the remaining operations in the order will work. This focus on bottleneck resources is an important principle in capacity planning and is also integral to ensuring an executable production planning process in the context of APO-PP/DS.

Finite and infinite scheduling

If a check is performed to determine the existing production resource load, that is, to determine whether capacity is available or has already been reserved by another order, this is referred to as finite scheduling. The availability checked in this instance is finite. If this check is not performed, this is referred to as infinite scheduling, whereby the available capacity is assumed to be infinite.

Interaction with requirements planning

Finite capacity planning generally results in date shifts because time gaps must be found when the bottleneck resources can be scheduled. If a date is brought forward, the availability date of the order is delayed as a result. The deadline of the requirements date of the finished product is missed. If, on the other hand, the order is moved backward in time, the secondary requirements dates for the materials required for production are also delayed, with the result that the
receipt elements cannot cover these requirements in time. In short, capacity planning generally impacts the requirements plan (see Figure 2.5). Operation 0020 shown in Figure 2.5 is executed using the bottleneck resource. The total order is based on the bottleneck resource, which means that the availability date and secondary requirements have to be shifted.

You will need to react to these shifts with a new requirements plan, with which any new orders are generated with the scheduled requirement, and so on.

Material requirements planning and capacity planning are thus closely interwoven. The goal of production planning is to take into account these interdependencies and to create a consistent procurement plan.

To facilitate the planning process, the production plan is often firmed in the short term after capacity planning is completed. Individual orders or all orders can be firmed in a defined planning time fence. Firming means that the dates and quantities of the orders cannot be changed automatically; however, they can still be changed manually. The component requirements used for an order can also be firmed. This is useful if the required components are manually changed for an order in a way that deviates from the BOM explosion, with the result that a new BOM explosion is no longer possible.
2.2 Advanced Production Planning with APO-PP/DS

The previous section discussed the basic principles of production planning with SAP, which apply equally to ECC-MRP and APO-PP/DS. Even if you use APO-PP/DS, you still need to make the basic settings for the production planning process in ECC, so that you can then systematically enhance planning with the functions in APO. This section illustrates the advanced planning options that are available in APO-PP/DS.

APO-PP/DS offers an extremely wide range of additional processes and options. In practice, any one of the points discussed below would be enough to justify using PP/DS—you don’t have to use all of the functions simultaneously. Indeed, a gradual and selective enhancement of the core processes is often much more useful.

Note that the following description of the advanced options is not exhaustive. Rather, it focuses on just some of the main features, by way of an introduction to the more detailed descriptions of the individual functions in the following chapters.

2.2.1 Requirements Planning with Exact Times

Requirements planning in ECC is generally accurate to the day. Even if you can enter an availability date with an exact time, as would be done in sales orders, requirements planning still takes into account only the date. Similarly, requirements planning takes into account only the dates of dependent requirements, which are derived from the exact start time of an operation. This means that it is impossible to distinguish between two different requirements that relate to the morning and afternoon of the same date. Orders created to cover requirements in ECC only contain an availability date.

In APO-PP/DS, requirements planning is based on exact times (accurate to the second). Sales orders, dependent requirements, and all other requirements are assigned an exact time. Orders to cover the requirements are scheduled for precisely this time.

If, for example, you need a precise requirement coverage for a just-in-time processing, this can be planned with APO-PP/DS.
2.2.2 Descriptive Characteristics

If you use the Planning with final assembly planning strategy, the planned independent requirements are consumed by sales orders, which are generally received at a later stage. In ECC, this consumption is both plant-specific and material-specific.

In APO, you can control consumption more precisely across plants and materials. For example, consumption can be specific to individual customers. For this purpose, planned independent requirements are created with reference to individual customers, that is, they are assigned additional descriptive characteristics. Sales orders that are received then only consume the forecasts for these customers.

2.2.3 Simultaneous Quantity and Capacity Planning

In ECC, quantities and capacities are planned separately. This applies to requirements planning, but the possibility of taking into account capacities is similarly limited when you manually create or move an order. Instead, this must be done in a second step.

In APO-PP/DS, you can plan quantities and capacities simultaneously. For example, the capacity situation can also be considered when an additional order is created in a short-term horizon in which capacity planning has already been completed and the production plan is already defined. The order can be created only if periods of available capacity are found for the operations in the order, and it is then automatically scheduled for this period.

2.2.4 Production Planning Runs with Several Steps

In APO-PP/DS, it is easy to construct the automatic production planning process from several steps. The individual steps are simply specified in the production planning run. An example of how individual steps can be placed in a logical sequence is shown below:

1. Requirements planning based on MRP logic
2. Scheduling of capacities for bottleneck resources
3. Requirements planning for the materials for which capacity planning has resulted in shifts in requirements

These steps can be easily defined using procedures referred to as heuristics, and can be limited to specific materials or resources (see Fig-
ure 2.6). The result of this kind of planning run (which, in practice, often comprises up to 10 steps) is a procurement plan, which allows for as many conditions of planning as possible (capacity bottlenecks, deadlines).

2.2.5 Pegging and Control of the Material Flow

In ECC, dynamic references are created between requirement and procurement elements in order to evaluate requirements planning. These references can be seen in the MRP list or in the current stock/requirements list as part of the Pegged Requirements and Order Report functions, and they can be used to edit the planning result manually. Because these references are generated dynamically and are not stored in the database, they are not available for other transactions or functions.

Pegging

In APO-PP/DS, dynamic references are similarly created between requirements and procurement elements following requirements planning or the generation of orders. In APO, these references are...
called *pegging relationships*. These relationships are created in multi-level production across all BOM levels. This network of relationships is referred to as a *pegging network*. In contrast to ECC, pegging relationships are stored in the APO database and are therefore available to all applications in APO. The pegging network can be used in capacity planning, for example, to shift the corresponding orders for components whenever an order is shifted.

Dynamic pegging can be influenced by a range of settings, and can be adjusted to suit the specified planning situation (see Figure 2.7). You can also fix pegging relationships so that the relevant orders and requirements remained fixed in a relationship with one another, even if the planning situation changes and new dynamic pegging relationships are created as a result. You can create (and delete) these fixed relationships manually or automatically with the relevant functions or heuristics.

![Dynamic and fixed pegging](image)

Figure 2.7 APO Transaction "Product," Transaction Code /SAPAPO/MAT1, Product Master and Pegging Settings
2.2.6 Determining the Source of Supply and Cost-Based Planning

The procedure for selecting a source of supply in ECC is described below.

Source of supply for external procurement in ECC

You may have several different vendors for externally procured materials. If you want one of several vendors to be automatically selected in materials planning, all planning-relevant vendors must first be defined in the purchasing info record, scheduling agreement, or contract in the source list. If several MRP-relevant vendors exist, the selection of a single vendor must be defined using a quota arrangement. In this case, scheduling of the replenishment lead time may be vendor-specific.

Source of supply for in-house production in ECC

Several sources of supply may also exist as alternative production versions for materials produced in-house. Production versions are defined in the material master, and they, in turn, define which manufacturing process is to be used, usually by specifying a routing and a BOM (or master recipe in PP-PI). Production versions can be limited in terms of their validity periods and lot-size range (see Figure 2.8). If several valid production versions exist simultaneously, ECC simply selects the first valid version, or a quota arrangement is used to distribute production among several production versions.

Sources of supply in APO

The ECC sources of supply described above are the same in APO after they are transferred. However, the process for selecting a source of supply is different in APO, in that costs may play a crucial role.

First, a check is performed to determine whether a specific source of supply can deliver by the required delivery date. If this is not possible because the replenishment lead time is too long, APO searches for an alternative source of supply with a shorter replenishment lead time. For example, the vendor with the shortest delivery time can be automatically selected if scheduling problems arise.

Cost-based planning

Costs can also be considered in relation to supply. You can ensure that, among several possible vendors, the one with the lowest costs is always automatically selected (provided that there are no scheduling problems). Various price scales can be taken into account in this

1 At this point, we’ll focus on using production versions, because only they are relevant to APO.
case, which means that different vendors may be used, depending on the lot size.

2.2.7 Advanced Alert Handling

Exception messages (alerts) indicate problems with planning. In ECC, exception messages are displayed in the MRP list (or in the current MRP data structures).
stock/requirements list). Collective evaluation is possible if you call up the collective display of all MRP lists. In the material overview, you can display all exception messages that appear in the individual materials, sorted by exception group (see Figure 2.9). To examine a problem, you must then access the individual list.

Alerts

In APO-PP/DS, the options for alert handling are much more advanced than they are in ECC. First, you can display alerts in the evaluation lists (for example, in the order views) in many different ways. In addition, alerts that are issued in relation to the supply of an important component are also propagated to and displayed in the finished product (network alerts). Alerts are propagated based on the relevant pegging relationships. The pegging network can also be used to evaluate the entire order structure for orders (see Figure 2.10).

Alert Monitor

Finally, the Alert Monitor provides a comprehensive tool for the centralized evaluation of alerts. The Alert Monitor provides an overview of all relevant alerts. Alerts can be evaluated across all materials, resources, plants, and so on (see Figure 2.11).
Figure 2.10 APO Transaction "Product View," Transaction Code /SAPAPO/RRP3,
Accessing the Context for an Order in Multilevel Production from the Product View

Figure 2.11 APO Transaction "Alert Monitor," Transaction Code /SAPAPO/AMON1,
Alert Monitor with PP/DS Alerts
If you incorporate the Alert Monitor into the product planning table as a chart, this enables alert-based planning in the sense that you can make manual changes in one chart (for example, you shift orders in the capacity planning table) and simultaneously monitor the alerts that are triggered or resolved as a result in the Alert Monitor chart.

2.2.8 Advanced Options in Capacity Planning

In ECC, capacity planning can be performed manually (in the capacity planning table), or executed automatically as a background job. All orders that require the same work center can be scheduled in chronological sequence.

One general benefit of using capacity planning in APO is the improved performance. Due to the liveCache architecture, the detailed scheduling planning board in APO can be used for many orders, without affecting runtime (in ECC, the time it takes to import a large number of orders from the database can lead to situations in which the planning table can almost no longer be used). The considerably enhanced performance in APO also enables the inclusion of new features, such as an **Undo** function, which allows you to manually undo individual steps.

A whole range of advanced options and selection criteria are provided for manual and, in particular, automatic scheduling and rescheduling of orders. These options are merely listed at this stage. You can use the strategy profile (see Figure 2.12) to define, among other things:

- Finite or infinite scheduling, using a finiteness level if required
- Scheduling sequence
- Whether alternative resources (modes) are to be taken into account
- Compact scheduling
- Whether pegging relationships are to be considered
- Whether order-internal relationships are to be taken into account

Various functions and heuristics are available for capacity planning; (fixed) pegging can be used in various ways; resource overload alerts can be used for troubleshooting; and so on.
APO is ultimately a production planning system, which contains a powerful optimization tool, the PP/DS Optimizer. Optimization is the final step in the production planning process, which can therefore be logically broken down into the following three steps:

1. Requirements planning (quantity planning)
2. Capacity planning
3. Optimization

Steps 2 and 3 can also be merged and executed by the Optimizer (see Figure 2.13). The Optimizer thus represents the only option for con-
sistently taking into account all constraints in a multilevel production plan.

2.2.9 Simple Options for Enhancement with Custom Functions and Heuristics

In ECC (as in APO), the exact steps involved in planning can be determined by a range of customizing settings. However, if you want to take things a step further and, for example, create special new planning algorithms, a modification of the ECC system is required.
In APO-PP/DS, it is very easy to incorporate new algorithms and processes into the planning process by adding them to the system as additional functions or heuristics. They are then available alongside the standard algorithms (see Figure 2.14) and can simply be used as alternatives in the applications. A system modification is not required.

![Figure 2.14](image)

Figure 2.14 APO Customizing Setting “Change Heuristics,” Transaction Code /SAPAPO/CDPSC11, List Showing Some of the Delivered Heuristics
2.3 Planning in APO and Execution in ECC

To fully benefit from using APO-PP/DS, an understanding of the main options for advanced planning is essential. This includes a clear understanding of how an APO function affects the final production plan that is to be executed.

Planned orders and purchase requisitions represent the direct result of production planning in APO-PP/DS. These orders are created based on APO master data, which was transferred from ECC. When they are converted into manufacturing orders or purchase orders, the orders must be transferred to the executing ECC system. The corresponding ECC master data is again essential for this purpose. The ECC master data design is therefore very important in APO planning. Master data should be maintained in a way that both supports the relevant APO process and enables a smooth transfer of the planning result from APO back to ECC.

The planning steps executed in APO only make sense if the results can have a rippling effect in the manufacturing order or purchase order in ECC. Note also that certain process steps in the ECC manufacturing order must be transferred back to APO (production backflushes result in the reduction of the corresponding capacity requirement in APO, for example). But, it is not useful to exploit all of the options that are theoretically possible in the ECC manufacturing order. For example, you could manually reschedule an operation from the production order by changing the default values. However, the result could not be taken into account in APO because the APO order is based on the APO master data. Therefore, this step is not permitted. The reasoning behind this constraint in this example is that rescheduling is a function of production planning and thus of APO, and therefore should be executed in APO.

It follows that you should therefore verify the integrity of all process steps with APO. These include creating master data, transferring master data to APO and enhancing it there as required, using transaction data, planning in APO, converting orders and transferring them to ECC, and backflushing manufacturing orders.
Index

A

Absolute optimum 235
Accessibility 232
Action at scheduling error 226
Activation of sequence-dependent setup activities 230
Active model 78
Active planning version 78
Active strategy 180
Activities 216
Additional status 247
Advanced planning 19
Alert 38, 229, 234
Alert based planning 209
Alert management 246
Alert Monitor 38, 209, 213, 219, 243
Alert notification engine 248
Alert object type 247
Alert profile 204, 244
Alerts 206
 redefine 245
Alternative mode 220, 228, 240
Alternative procurement source 249
Alternative production data structure 286
Alternative resource 186, 209, 218, 220, 249, 289, 291
Alternative work center 240
Analytical solution 235
Anonymous make-to-stock 138
APO indicator 70
APO master data 58
APO resource 79
APO target system 52
APO-relevant 73
APO-specific data field 59
Append operation from behind 222
Append structure 77
Application errors 90
Application log 94
Ascertaining planned independent requirements 162
Assignment mode 137
ATP category 127
ATP check 273
ATP Customizing 273, 274
ATP → Available to Promise (ATP)
Automated Planning 251
Automated production control 237
Automatic determination of the source of supply 174
Automatic mode selection 225, 229
Automatic planning 210
Availability check 273
Availability situation 213
Available capacity 220, 234
Available to Promise (ATP) 272

B

Background processing 241
Backlog 234
Backlog rescheduling 235
Backorder processing 283, 285, 286
Backward planning 221, 257
Backward scheduling 25
Backward with reverse 221
BAdI 56
Basic date 26
BD61 75
Block limit 225, 226
Block planning 222, 224
BOM 27
Bottleneck 264
Bottleneck resource 30, 214, 239, 265, 266, 286
Bottleneck workstation 256
Bottom-up planning 251
Breaks 177
BSG 54
Bucket 224, 280
Bucket capacity 222
Bucket oriented planning 224
Bucket-finite 227
Bucket-oriented capacity check 222
Bucket-oriented CTP 273, 280
Bucket-oriented planning 235
Index

Business system group 54
Button profile 235
By period 171

Calendar 242
Calendar resources 176
Campaign 225
Campaign optimization 241
Campaign requirement 225
Capable to Match (CTM) 152
Capable to Promise (CTP) 250, 272
Capacity availability 243
Capacity leveling 235, 258
Capacity load 214
Capacity planning 29, 206, 214, 216, 221, 232
Capacity requirement 29, 204, 209, 218
Capacity requirements planning (CRP) 17, 23
Capacity situation 206, 209
Category 83
Category group 137
Change fixing/planning intervals 230
Change material master 173
Change mode 204
Change pointer 75
Change transfer 60, 73
Change transfer of master data 73
Characteristic 134
Characteristic evaluation 281
Chart 216, 220, 234, 237
Chart selection 208, 209, 232
Check control 281
Check instructions 274
Check mode 132, 273, 281
Checking horizon 283
CIF 45
CIF cockpit 95
CIF comparison/reconciliation function 96
CIF interface 21
CIFCUS 75
CIFMAT 75
CIFMTMRPA 77
CIFSRC 75
CIFVEN 75
Clipboard 233, 234
Close slots 222
Collective access 211, 212
Collective display 211
Collective requirements 139, 142
Communication errors 90
Compact scheduling 227
Comply with block planning 225
Configuration 209
Configuration-dependent setup 249
Consider Maximum Intervals 226
Consider safety stock requirements in SAP liveCache 194
Consider time buffer (pegging) 227, 228
Constraint 214, 217, 221, 229, 235, 236
Constraint programming 242
Constraint propagation 242
Consumption group 144
Consumption-based planning 24
Context menu 232, 233, 234
Context of an order 189
Continuous input and output 156
Continuous time CTP 275
Control parameter 153
Conversion 204
Conversion flag 199
Conversion of Orders 199
Conversion of Orders/Purchase Requisitions 140
Conversion rule 139
Costs 240
Cross-order relationship 227
CRP → Capacity requirements planning (CRP)
CTP check 224
CTP confirmation 278
CTP scenario 222
Current date 224
Current modes 223
Customer exit 56
Customer requirements class 273
Customer requirements type 273
Customer's required date 230
Customizing 204, 210, 215, 218, 230, 231, 235, 238, 247
<table>
<thead>
<tr>
<th>Letter</th>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>Data channel</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>Database</td>
<td>204</td>
</tr>
<tr>
<td></td>
<td>Database alert</td>
<td>248</td>
</tr>
<tr>
<td></td>
<td>Date</td>
<td>242</td>
</tr>
<tr>
<td></td>
<td>Date alert</td>
<td>191</td>
</tr>
<tr>
<td></td>
<td>Date and time entry</td>
<td>217</td>
</tr>
<tr>
<td></td>
<td>Date fixed</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td>Date/time violation</td>
<td>219</td>
</tr>
<tr>
<td></td>
<td>Days’ supply</td>
<td>202, 213</td>
</tr>
<tr>
<td></td>
<td>Days’ supply type</td>
<td>205, 210</td>
</tr>
<tr>
<td></td>
<td>Deallocate</td>
<td>217, 218</td>
</tr>
<tr>
<td></td>
<td>Deallocate costs</td>
<td>237</td>
</tr>
<tr>
<td></td>
<td>Define activities for mass processing</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td>Define finiteness level for resources</td>
<td>185</td>
</tr>
<tr>
<td></td>
<td>Degree of freedom</td>
<td>243</td>
</tr>
<tr>
<td></td>
<td>Delay</td>
<td>229, 240, 244</td>
</tr>
<tr>
<td></td>
<td>Delay costs</td>
<td>239, 240</td>
</tr>
<tr>
<td></td>
<td>Deletion flag</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>Delivery time</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Demand Planning (DP)</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Dependent operation</td>
<td>226, 229</td>
</tr>
<tr>
<td></td>
<td>Descriptive characteristics</td>
<td>33, 143</td>
</tr>
<tr>
<td></td>
<td>Desired date</td>
<td>224</td>
</tr>
<tr>
<td></td>
<td>Detailed planning function</td>
<td>253</td>
</tr>
<tr>
<td></td>
<td>Detailed planning heuristic</td>
<td>251</td>
</tr>
<tr>
<td></td>
<td>Detailed scheduling board</td>
<td>209, 236</td>
</tr>
<tr>
<td></td>
<td>Detailed scheduling heuristic</td>
<td>214, 218, 229, 234</td>
</tr>
<tr>
<td></td>
<td>Detailed scheduling planning board</td>
<td>206, 210, 214, 216, 217, 230, 231, 266</td>
</tr>
<tr>
<td></td>
<td>Detailed scheduling strategy</td>
<td>217</td>
</tr>
<tr>
<td></td>
<td>Determining the source of supply</td>
<td>172</td>
</tr>
<tr>
<td></td>
<td>Diagram area</td>
<td>216</td>
</tr>
<tr>
<td></td>
<td>Diagram section</td>
<td>232</td>
</tr>
<tr>
<td></td>
<td>Direction of interchangeability</td>
<td>197</td>
</tr>
<tr>
<td></td>
<td>Display operation in work area</td>
<td>233</td>
</tr>
<tr>
<td></td>
<td>Display period</td>
<td>234</td>
</tr>
<tr>
<td></td>
<td>Distribution definition</td>
<td>53, 87</td>
</tr>
<tr>
<td></td>
<td>Downtime</td>
<td>234</td>
</tr>
<tr>
<td></td>
<td>DP → Demand Planning (DP)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Drag and Drop</td>
<td>217, 233, 234</td>
</tr>
<tr>
<td></td>
<td>DS strategy</td>
<td>217</td>
</tr>
<tr>
<td></td>
<td>DS strategy profile</td>
<td>220</td>
</tr>
<tr>
<td></td>
<td>DS view</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>Dynamic exception alerts</td>
<td>206</td>
</tr>
<tr>
<td></td>
<td>Dynamic exception condition</td>
<td>292</td>
</tr>
<tr>
<td></td>
<td>Dynamic exception message</td>
<td>204, 209</td>
</tr>
<tr>
<td></td>
<td>Dynamic pegging</td>
<td>190, 228, 229</td>
</tr>
<tr>
<td></td>
<td>Dynamic setup</td>
<td>239</td>
</tr>
<tr>
<td>E</td>
<td>Earliest date</td>
<td>224</td>
</tr>
<tr>
<td></td>
<td>Eliminating transfer errors</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>End of horizon</td>
<td>236</td>
</tr>
<tr>
<td></td>
<td>End run at the first solution</td>
<td>242</td>
</tr>
<tr>
<td></td>
<td>Enhanced backward scheduling</td>
<td>230</td>
</tr>
<tr>
<td></td>
<td>Error</td>
<td>209, 244</td>
</tr>
<tr>
<td></td>
<td>Error-tolerant scheduling</td>
<td>226, 229</td>
</tr>
<tr>
<td></td>
<td>Evaluation tool</td>
<td>201</td>
</tr>
<tr>
<td></td>
<td>Exact solution to a problem</td>
<td>235</td>
</tr>
<tr>
<td></td>
<td>Exception based planning</td>
<td>209</td>
</tr>
<tr>
<td></td>
<td>Exception group</td>
<td>212</td>
</tr>
<tr>
<td></td>
<td>Exception message</td>
<td>28, 37, 203, 209, 213, 217, 222, 234, 243</td>
</tr>
<tr>
<td></td>
<td>Exception-based planning</td>
<td>292</td>
</tr>
<tr>
<td></td>
<td>Executing the integration model</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>Expanded selection</td>
<td>212</td>
</tr>
<tr>
<td></td>
<td>Expert view</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>Explain result</td>
<td>241</td>
</tr>
<tr>
<td></td>
<td>Extended selection</td>
<td>207, 210</td>
</tr>
<tr>
<td></td>
<td>External capacity</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>External procurement</td>
<td>25, 174</td>
</tr>
<tr>
<td>F</td>
<td>Factorial</td>
<td>235</td>
</tr>
<tr>
<td></td>
<td>Feasible plan</td>
<td>209, 229</td>
</tr>
<tr>
<td></td>
<td>Feasible production plan</td>
<td>280, 282, 292</td>
</tr>
<tr>
<td></td>
<td>Feasible production program</td>
<td>217, 260</td>
</tr>
<tr>
<td></td>
<td>Feasible solution</td>
<td>242</td>
</tr>
<tr>
<td></td>
<td>Field selection</td>
<td>232</td>
</tr>
<tr>
<td></td>
<td>Filter object</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>Find slot</td>
<td>217, 221</td>
</tr>
<tr>
<td></td>
<td>Finite</td>
<td>217</td>
</tr>
<tr>
<td></td>
<td>Finite capacity</td>
<td>224</td>
</tr>
<tr>
<td></td>
<td>Finite forward planning</td>
<td>221</td>
</tr>
<tr>
<td></td>
<td>Finite MRP run</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>Finite planning</td>
<td>184, 221, 249</td>
</tr>
<tr>
<td></td>
<td>Finite requirements planning</td>
<td>179, 250, 277, 287</td>
</tr>
<tr>
<td></td>
<td>Finite resource</td>
<td>183, 221</td>
</tr>
<tr>
<td></td>
<td>Finite scheduling</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Finite strategy</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>Finiteness level</td>
<td>184, 224, 229, 241</td>
</tr>
<tr>
<td></td>
<td>Firming</td>
<td>31, 164</td>
</tr>
</tbody>
</table>
index

Firming date 166
Firming horizon 166
Fixed costs 240
Fixed date 133
Fixed lot size 171
Fixed material flow 281, 283
Fixing interval 218, 230, 234
Flexible planning 17
Float after production 26
Float before production 26
Forward scheduling 28
Fragmentation 279, 285
Function 150

G

GATP 20
General selection options for materials 61
Genetic algorithm 242
Global ATP 20, 273
Global parameters and default values 89, 126
maintain 126
Goods issue time 176
Goods receipt time 176
Graphic object 232

H

Hard constraint 243
Heuristic 130, 153, 204, 206, 210, 231, 236
Heuristic for flow control 160
Heuristic profile 147, 229
Heuristically 242
Heuristics package 159
Highlighting 218
Horizon 236, 241

I

Ignore error 68
Inbound queue 57
Inbound resource 176
Individual customer requirement 142
Industry solution 22
Industry-specific process 241
Infinite planning 179
Infinite scheduling 30, 222
Infinite sequencing 223
Information 209, 244
Inheriting fixed pegging 194
In-house production 25
In-house production time 25, 28
Infinite 217
Initial dialog 236
Initial transfer 59
Input firmed 165
Insert operation 217, 221
Integration model 60, 85
Activate 65
Create 61
Delete 72
Execute 63
Interactive 214
Interactive detailed scheduling 230
Interactive optimization 236
Interactive planning 146, 217, 229, 236
Interactive setup optimization 263
Interruptibility of activities 243
Inventory management 216

K

Key figure 134, 239
KI++ 251

L

Layout 205, 210, 213, 217, 232
Lean manufacturing 206, 207, 286
Line utilization planning 287, 293
Line-loading planning 209
List area 234
LiveCache 20
Location 177
Location product 201
Log 220, 241, 291
Log Deactivated Material Masters 65
Logical unit of work 93
Loser products 180
Lot size 156
Lot size settings from heuristic 170
Lot-for-lot 170
Lot-sizing procedure 156
Lowest mode priority 225
Low-level code 150, 253, 262, 287, 291
Low-level code alignment 253
Low-level code method 250, 253
LTP 17
LUW 93

M
Maintain conversion rules 140
Maintain heuristics 154, 193
Maintain interchangeability group 197
Maintain strategy profile 181
Make span 239
Make-to-order production 141
Make-to-order segment 203
Make-to-stock strategy 274
Manual planning 217, 234
Manual postprocessing 262
Manual sequence scheduling 230
Manual sequencing 262
Mass conversion 204
Mass data 211
Mass rescheduling 229
Mass selection 211
Master recipe 29
Material availability 242
Material requirements planning 24
Maximum delay costs 239, 240
Maximum integration model 69
Maximum interval 226
Maximum lot size 171
Maximum runtime 241
Message types 75
Middle-out planning 251
Minimize runtime 230
Minimum lot size 171
Mixed resource 78
MM 17
MM02 173
Mode 221, 223, 225
Mode costs 239, 240
Mode priority 182, 187
Model 78
Model and planning version management 127
Monitoring 90
MRP 17, 23, 213
MRP element 206
MRP II concept 29, 250
MRP list 211
MRP planner 206
MRP type 24, 61
MRP type X0 61
Multi-activity resource 78
Multilevel costs 175
Multiple loading 218
Multi-resource 223
Multi-resource planning 286, 287, 291
Multi-resource planning primary resource 287
mySAP SCM 17

N
Navigation area 216
Navigation structure 208, 233, 234, 266
Navigation tree 205, 210
Net change planning 150
Net requirements calculation 168
Network alert 191
Network display 216, 220, 232
Network view 268, 271
Non-availability 272, 273, 283, 285
Non-working time 217, 224, 225, 234
Number range 126, 247, 277, 278

O
Objective function 239
Offset 176
Offset time 178, 221, 223
Online transfer 73
Open selection criteria 71
Operation 216, 217
insert 262
squeeze in 217
Operation list 219, 234
Optimization 237, 251, 266
Optimization concepts 235
Optimization horizon 236, 240
Optimization objective 239
Optimization parameter 237, 238
Optimization procedure 242
Optimization profile 210, 231, 236, 238, 241, 259
Optimization result 235
Optimization run 236
Optimized setup 214
Optimizer 164, 214, 234, 259, 263
Optimizing lot-sizing procedure 156
Optimum 235
Order 204, 216
Order list 219, 232
Order liveCache 20
Order priority 240, 249, 263
Order processing 201
Order report 34, 190
Order structure 221
Order view 201, 206
Order-internal relationship 182, 226, 227, 228
Outbound queue 57
Outbound resource 176
Outlet 226, 229, 289
Output firmed 165
Overall lead time 239
Overall planning 252
Overall production costs 239
Overall profile 210, 214, 220, 231, 243, 244
Overall setting 210
Overlap 234
Overload 206, 209, 219, 222, 258

Periodic planning 210
Periodic product view 206
Periodic view 234
Period-oriented 234
Period-oriented plan 235
Period-oriented planning 206, 208
Permutation 235
Phase-out control 197
P 17
Pick and Drop 233, 234
Plan explosion 172
Planned delivery time 176
Planned independent requirements 134
Planned order quantity 220
Planning 203
Planning adjustment 142
Planning board profile 217, 232
Planning date 212, 234
Planning direction 217, 221, 222, 224, 234
Planning file 150
display 151
Planning group 152, 212
Planning interval 230
Planning log 234
Planning mode 179, 221, 223, 229
Planning object 254, 257
Planning of shortage quantities 155
Planning of standard lots 155
Planning package 197
Planning period 206, 234
Planning procedure 128, 218, 262
maintain 128
Planning product 141
Planning reservation 150
Planning result 214
Planning run 212
Planning segment 203
Planning strategy 179
Planning submode 226, 229
Planning table 207
Planning time 223
Planning versions 78
Planning with final assembly 138, 274
Planning with planning product 141
Planning without final assembly 139
Planning-related minimum interval 227
Plant stock 275
Plug-in 46
Index

PP 17
PP strategy profile 220
PP view 180
PP/DS alert 246
PP/DS alert profile 209, 244
PP/DS bucket capacity 224, 280
PP/DS horizon 148
PP/DS Optimizer 210, 218, 235, 263, 282, 285, 292
PP-Firmed 166
PPM change transfer 81
Primary resource 288
Prioritization 247
Priority 132, 162
Priority category 244
Process heuristic 282, 283
Processing indicator 213
Process-related minimum interval 226, 227
Procurement date 204
Product 216
Product alert 191
Product heuristic 146, 154, 204
Product hierarchy 141
Product interchangeability 197
Product interchangeability groups 197
Product inventory 216, 220
Product overview 211
Product planning board 291
Product planning table 206, 207, 213, 236, 265
Product stock 232
Product view 201, 202, 213
periodic 209, 291
Production costs 239, 240
Production data structure 81, 206
Production date 26
Production in a different location 172
Production line 287
Production list 210
Production order 199, 204
PP production overview 219
Production planner 207, 244
Production planning 23
Production planning run 148, 149, 236, 250
Production Planning/Detailed Scheduling 20
Production process 214
Production process model 81, 173, 206
Production program 209, 210
Production quantity 219, 220
Production rate 288
Production version 36, 288
Profile 204, 210, 232
Profile maintenance 231
Propagation range 149, 206, 210, 214, 215, 231, 240

Q
qRFC alert 95
qRFC monitor 94
Quantity alert 191
Quantity planning 220
Queued Remote Function Call (qRFC) 91
Quota Arrangement 294
Quotation heuristic 294

R
Receipts view 201
Reconciliation 251
Redirection of exception messages 246
Reducing planned independent requirements 142
Reduction of lead time 227
Regenerative planning 217, 218, 220
Relationship 217, 221, 227, 229, 235, 262
Release sales planning to SNP 134, 145
Removal of backlogs 230
Reorder point method 128
Repetitive manufacturing 286
Report 220
RAPOKZFX 70
RCIFIMAX 69, 72
RCIFMTDE 65, 72
RIMODAC2 72
RIMODEL 72
RIMODEG 72
Representative 246
Requested delivery date 133
Requested quantity 133
Required date 221, 222
Requirement ascertainment horizon 162
Requirement check 139
Requirement class 132
Index

Requirement coverage element 229
Requirement date/time 214, 217, 221
Requirement planning 222
Requirement planning with exact times 32
Requirement strategy 131
Requirement type 131
Requirement view 201
Reschedule 209, 257
Rescheduling 214, 217, 218, 220
Resource planning table 231
Resource 78, 183, 207, 214, 216
Resource assignment 230
Resource buffer 241
Resource chart 266
Resource load 210, 220, 234
Resource overload 209
Resource overload alert 184
Resource planning table 231, 232
Resource pool 233
Resource schedule plan 216
Resource selection 214
Resource situation 216
Resource time buffers 227, 228
Resource utilization 234
Resource utilization planning 286
Resource view periodic 209, 210
Reuse mode 155
Reverse 222
Reversing the planning direction 229
RFC 49
RFC connection 48
Right mouse buttom 220
Rounding profile 171
Rounding value 171
Routing 29
Row format 232
Rules-based availability check 274
Runtime 242

S
Safety days' supply 169
Safety stock 169, 194
Safety time 169
SALE 49
Sales order 131, 275
SAP APO 19
SAP APO customizing 205
SAP ECC 17
SAP R/3 17
SAP SCM 18
SAP_MRP_001 160
SAP_MRP_002 161
SAP_PP_002 130, 155, 168
SAP_PP_003 131, 155
SAP_PP_004 155
SAP_PP_005 155
SAP_PP_006 155
SAP_PP_007 155
SAP_PP_008 161
SAP_PP_009 161
SAP_PP_010 162
SAP_PP_011 192
SAP_PP_012 162
SAP_PP_013 155
SAP_PP_014 162
SAP_PP_015 162
SAP_PP_016 194
SAP_PP_017 192
SAP_PP_018 192
SAP_PP_019 192
SAP_PP_020 163
SAP_PP_021 155
SAP_PP_C001 155
SAP_PP_CTP 131
Schedule deallocated operations 230
Schedule sequence 230
Schedule sequence manually 230
Schedule slippage 257
Scheduling 30, 176, 214, 217, 218
Scheduling at block limits 226
Scheduling attempt 217
Scheduling attempt 217
Scheduling error 229
Scheduling offset 223
Scheduling on the required date 221
Scheduling problem 229
Scheduling sequence 182, 217, 223, 230, 263
Scheduling state 218
SCM Queue Manager 94
SD 17
Search area 242
Search for gaps 183
Search procedure 242
Selection 214
Selection criteria 243
Selection rule 202, 206
Selection variant 244
Sequence 218, 220, 221, 242
Sequence planning 234, 235
Sequence-dependent setup activity 230
Index

Sequence-dependent setup time 223
Sequencing 209, 214, 224, 232, 262, 270
Service heuristics 161
Set 215
Set requirements strategy 137
Set user parameters 87
Setup activity 196, 230, 287
Setup costs 239
Setup key 196
Setup matrix 195, 249, 263, 264, 267
Setup optimization 266, 267, 268
Setup sequence 263
Setup time 194, 218, 239, 263
Setup-condition-dependent setup time 263
Setup-status-dependent setup time 239
SFC 17
Shift 209
Shop floor control 210
Shop floor papers 237
Shortage 168, 209, 213
Shuffler 216, 233
Simultaneous quantity and capacity planning 33, 250, 293
Single level costs 175
Single resource 221, 223
Single-activity resource 78
SM59 50
SNP Optimizer 235
SNP → Supply Network Planning (SNP)
Soft constraint 243
SOP 17
Sort sequence 263
Sorting sequence 223
Source of supply 225
Special procurement key 172
Special stock 202
Specified date 224
Stable forward scheduling 230
Stage numbering 253, 262
Stage-numbering algorithm 163
Standard optimization profile 242
Start of horizon 236
Start of optimized schedule 236
Status information 217
Stock available for MRP 168
Strategy 157
Strategy profile 180, 231
Strategy setting 218, 220
Subassembly forecast 138
Submode 226
Subprofile 214
Substitution orders 198
Supersession chain 197
Supply chain management 17
Supply Network Planning (SNP) 20
Surplus 213

T
Table area 216
Table-oriented 232
Target host 50
Temporal termination criterion 229
Temporary requirement 277
Termination criterion 229, 236, 241, 242
Threshold value 244
Time buffer 178
Time constraint 217, 221
Time decomposition 241
Time factor 177
Time interval between activities 178
Time profile 148, 215, 231
Time relationship 242
Time series liveCache 20
Time window 236
Time-continuous capacity 224
Time-continuous CTP 273
Timeliness 270
Toolbar 232
Top-down planning 251
Total delays 240, 270
Total of the delay costs 239
Total of the mode cost 239
Total of the setup costs 239
Total of the setup times 239, 266
Total replenishment lead time 28
TP/VS → Transport Planning/Vehicle Scheduling (TP/VS)
Trade-off 240
Transaction codes
/INCMD/UI 197
/SAPAPO/C4 53, 87
/SAPAPO/C41 94
/SAPAPO/C5 88
/SAPAPO/CDPSB0 150
Index

/SAPAPO/CDPSC11 154, 193
/SAPAPO/CDPSC7 195
/SAPAPO/CQ 94
/SAPAPO/CSP1 144
/SAPAPO/LOC3 177
/SAPAPO/MAT1 130
/SAPAPO/MC90 135, 145
/SAPAPO/MD74 142, 143
/SAPAPO/MVM 127
/SAPAPO/RES01 183
/SAPAPO/RRP_NETCH 151
/SAPAPO/RRP3 133
/SAPAPO/RRP7 140
/SAPAPO/SCC03 173
/SAPAPO/SDP94 135
CFC1 58
CFC2 94
CFM1 61, 62
CFM2 65
CFP4 81
CR02 80
CURTO_CREATE 81
PIMG 48
Transaction data 85
Transaction data integration 83
Transfer of planning results 127
Transferring new APO-relevant master data 71
Transport Planning/Vehicle Scheduling (TP/VS) 20

U

Undo 218, 234
User settings 204, 210
Use-up strategy 197
Utilization rate 177

V

Validity area 229
Validity periods for orders 225
Variable costs 240
Variable heuristic 146, 204
Variable view 214, 215
Variants 208
Viable production plan 249, 251
Visualization profile 205, 210

W

Warning 209, 244
Wave algorithm 286, 291
Weighting criterion 240
Weighting factor 239
Window technique 241
WIP list 219
Work area 214, 215, 231, 233
Work center 29, 78
Work in progress 219
Worklist 233, 241