
DIE
LESEPROBE
Diese Leseprobe wird Ihnen von www.edv-buchversand.de zur Verfügung gestellt.

» Hier geht‘s
direkt

zum Buch

AI Business Cases mit SAP
Szenarien, Tools und Best Practices

https://www.edv-buchversand.de/product/rw-10958/AI%20Business%20Cases%20mit%20SAP

107

Kapitel 4

Anomalieerkennung in
Finanztransaktionen

Deep Learning und Machine Learning erkennen in Finanzdaten potenziell

betrügerische oder fehlerhafte Transaktionen. Der Einsatz des SAP AI Core

erlaubt die Echtzeitanalyse großer Datenmengen, was Risiken reduziert

und Compliance verbessert.

Nachdem wir nun schon einige Anwendungsfälle in der Logistik bespro-

chen haben, wenden wir uns in diesem Kapitel einem Anwendungsfall aus

dem Finanzwesen zu.

Die Erkennung von Auffälligkeiten in Finanzdaten ist eine zentrale Heraus-

forderung im digitalen Zeitalter. Gerade aufgrund großer Datenmengen

und zunehmend automatisierter Prozesse ist es wichtig, geeignete Metho-

den für die zuverlässige Detektion von Abweichungen zu kennen und prak-

tisch einzusetzen. Hierbei spielen die Auswahl und Vorbereitung der Daten

ebenso eine Rolle wie die Definition, was im jeweiligen Kontext als »nor-

mal« oder »anomal« gilt. Aufbauend darauf lernen Sie, wie sich geeignete

Algorithmen – exemplarisch der Isolation Forest – für die Anomalieerken-

nung implementieren lassen.

Neben der technischen Umsetzung rückt auch die Einbettung der Lösung in

bestehende IT-Landschaften in den Fokus. Sie sehen, wie Sie APIs entwi-

ckeln, Trainings- und Deploymentszenarien mit Docker und ArgoFlows in

SAP AI Core automatisieren und KI-Services mit KServe produktiv bereit-

stellen. Abschließend wird die Integration und Bereitstellung der KI-Lösung

auf der SAP Business Technology Platform (SAP BTP) praxisnah erläutert.

Welche Voraussetzungen für die Entwicklung einer zuverlässigen Anoma-

lieerkennung geschaffen werden müssen, zeigt Abschnitt 4.2, »Die richtigen

Voraussetzungen schaffen«. Die technischen Details der Umsetzung, von

der Algorithmus-Implementierung bis zur Bereitstellung als Service, wer-

den in Abschnitt 4.3, »Technische Umsetzung«, behandelt. Wie Sie die Lö-

sung auf der SAP BTP integrieren und betreiben, erläutert Abschnitt 4.4,

»Die KI-Lösung auf der SAP BTP bereitstellen«. Schritt für Schritt erhalten

4 Anomalieerkennung in Finanztransaktionen

108

Sie so einen praxisorientierten Leitfaden, um Anomalieerkennung in Ihren

Finanzprozessen erfolgreich einzusetzen.

4.1 Einleitung und Zielsetzung

Ausgangssituation Data Scientists bei der fiktiven SecureBank AG, einer mittelgroßen europä-

ischen Bank, die ein modernes und breites Portfolio aus Online-Banking,

Kreditkarten und Mobile Payment anbietet, beginnen ihren Arbeitstag rou-

tinemäßig mit einer genauen Prüfung der aktuellen Transaktionsübersicht

auf dem Dashboard für Betrugserkennung. Hinter diesem Dashboard steht

ein komplexes technisches System, das täglich mehrere Tausend Finanz-

transaktionen in Echtzeit analysiert und überwacht.

Gewöhnliche und legitime Transaktionen dominieren typischerweise das

Bild: Kundinnen und Kunden kaufen Lebensmittel im örtlichen Super-

markt, tanken ihre Fahrzeuge, besuchen Restaurants zur Mittagszeit oder

erwerben abends online Kleidung und Unterhaltungselektronik. Die Be-

träge solcher alltäglichen Zahlungen liegen meist zwischen 10 und 100 Euro

und erfolgen während der üblichen Geschäftszeiten – insbesondere wäh-

rend der Mittagszeit oder am frühen Abend. Die Händlerkategorien sind

vertraut und umfassen Lebensmittelgeschäfte, Tankstellen, Bekleidungsge-

schäfte sowie Elektronikfachhändler.

Aufällige Muster Doch an diesem Morgen fällt den Expertinnen und Experten auf, dass sich

einige Transaktionen ungewöhnlich verhalten: Um 2:43 Uhr nachts wird zu-

nächst eine extrem niedrige Zahlung von nur 19 Cent bei einer Tankstelle re-

gistriert. Solche kleinen Beträge könnten Testtransaktionen sein, bei denen

Betrügerinnen und Betrüger prüfen, ob gestohlene oder kompromittierte

Karten funktionieren. Nur eine Stunde später folgt eine auffällig hohe Ab-

buchung von über 3.000 Euro beim selben Händler, allerdings diesmal aus

einer Kleinstadt, in der üblicherweise kaum Transaktionen stattfinden.

Noch später in der Nacht, um etwa 4:30 Uhr, erfolgt erneut eine winzige

Transaktion von lediglich 30 Cent in einem Restaurant. Kurze Zeit darauf

wird eine Zahlung über 4.500 Euro für eine Reisebuchung festgestellt. Ein

Betrag, der deutlich außerhalb des üblichen Transaktionsrahmens der be-

troffenen Kundinnen und Kunden liegt.

Nicht der Händler,

sondern das Muster

ist relevant

Diese Kombinationen von ungewöhnlich kleinen Testbeträgen, gefolgt von

großen Transaktionen an Orten und zu Zeiten, die nicht zum üblichen Kun-

denverhalten passen, bilden ein typisches Muster für Betrugsversuche. Da-

bei sind nicht die Händlerkategorien selbst verdächtig, denn Tankstellen,

Restaurants und Reisebüros sind etablierte und legitime Zahlungsempfän-

4.1 Einleitung und Zielsetzung

109

ger, sondern vielmehr die ungewöhnlichen Kombinationen aus Uhrzeit,

Standort und Betrag, die die Transaktionen verdächtig machen.

Um betrügerische Aktivitäten künftig noch schneller und zuverlässiger er-

kennen zu können, plant die SecureBank AG den Einsatz moderner KI-ge-

stützter Methoden. Derzeit werden verschiedene Machine-Learning-Algo-

rithmen – insbesondere spezialisierte Verfahren wie Isolation Forests oder

neuronale Netze – evaluiert, um eine automatisierte Echtzeiterkennung

von Anomalien in Finanztransaktionen zu ermöglichen. Ziel ist es, mithilfe

von KI-Modellen aus historischen Daten typische Muster und Abweichun-

gen zu identifizieren und verdächtige Transaktionen unmittelbar an das

Fraud-Prevention-Team der Bank zu melden.

Dabei ist den Verantwortlichen bewusst, dass nicht jede ungewöhnliche

Transaktion zwangsläufig auf Betrug hindeutet. Beispielsweise kann auch

eine spontane Tankaktion einer jungen Kundin oder eines Kunden nach ei-

ner nächtlichen Party eine Auffälligkeit im System erzeugen, ohne dass ein

Betrugsfall vorliegt. Umso wichtiger ist es, die Algorithmen sorgfältig zu

trainieren und das Zusammenspiel zwischen automatisierter Erkennung

und manueller Überprüfung optimal zu gestalten. Die frühzeitige Identifi-

kation echter Betrugsversuche soll dazu beitragen, finanzielle Schäden zu

vermeiden und den Aufwand für Rückerstattungen und Schadenregulie-

rung zu minimieren.

Die Einführung einer automatisierten und KI-gestützten Anomalieerken-

nung soll somit das Vertrauen der Kundinnen und Kunden in die Secure-

Bank AG stärken, finanzielle Risiken reduzieren und gleichzeitig sicher-

stellen, dass regulatorische Anforderungen an Sicherheit und Compliance

umfassend erfüllt werden.

Vielfältige

Anwendungs-

möglichkeiten

Doch die angestrebte Lösung bietet Potenzial weit über die reine Betrugser-

kennung bei Finanztransaktionen hinaus. Künftig sollen auch weitere An-

wendungsfelder geprüft werden: beispielsweise die Überwachung interner

Buchungen in SAP-Buchungsjournalen oder die automatisierte Detektion

ungewöhnlicher Materialbewegungen im Bereich Lager- und Materialwirt-

schaft. So kann die SecureBank AG von der Anomalieerkennung in verschie-

denen Unternehmensbereichen profitieren und die Lösung sukzessive wei-

ter ausbauen.

Im weiteren Verlauf dieses Kapitels begleiten Sie die SecureBank AG bei der

schrittweisen Einführung und technischen Umsetzung der KI-basierten

Anomalieerkennung – von den notwendigen Voraussetzungen über die Im-

plementierung bis hin zur produktiven Bereitstellung auf der SAP Business

Technology Platform.

4 Anomalieerkennung in Finanztransaktionen

110

4.2 Die richtigen Voraussetzungen schaffen

Klarheit von

Anfang an

Die automatische Erkennung von Betrugsfällen oder fehlerhaften Transak-

tionen mithilfe von KI-Verfahren erfordert ein systematisches und metho-

disches Vorgehen. Entscheidend für den Erfolg eines solchen Projekts ist,

von Beginn an klar zu definieren, welche Art von Anomalien erkannt wer-

den soll und wie diese sich vom normalen Verhalten abgrenzen lässt. Eben-

so wichtig ist es, die erforderlichen Voraussetzungen zu schaffen, wie z. B.

die Verfügbarkeit qualitativ hochwertiger Daten, geeignete technische In-

frastruktur sowie die Auswahl und Integration passender KI-Methoden in

bestehende Geschäftsprozesse.

Zusammenarbeit

ist Pflicht

Ein systematischer Ansatz stellt sicher, dass die Anomalieerkennung nicht

nur technisch einwandfrei funktioniert, sondern auch organisatorisch und

regulatorisch tragfähig umgesetzt werden kann. Dabei ist es unerlässlich,

dass Fachbereich, IT und Compliance von Anfang an eng zusammenarbei-

ten. Klar definierte Prozesse, Zuständigkeiten und Schnittstellen zwischen

den beteiligten Teams helfen dabei, erkannte Anomalien schnell und effizi-

ent zu bearbeiten sowie Maßnahmen rechtzeitig einzuleiten.

Die drei Erfolgs-

faktoren

Um diese Herausforderung erfolgreich zu meistern, sollten die folgenden

drei zentralen Aspekte im Detail betrachtet werden:

▪ Welche Daten werden benötigt und wie müssen diese vorbereitet sein?

▪ Was genau ist normal und was gilt als anomal?

▪ Welche Algorithmen und KI-Verfahren eignen sich besonders gut zur Er-

kennung von Anomalien?

Diese drei Kernelemente bilden das Fundament für ein robustes und effizi-

entes Anomalieerkennungssystem, das Betrugsversuche automatisiert und

zuverlässig identifiziert, bevor sie Schaden verursachen können. Wir be-

sprechen diese Kernelemente in den folgenden Unterabschnitten dieses

Abschnitts.

4.2.1 Daten auswählen und vorbereiten

Relevanz der

Datenbasis

Die Qualität und Aussagekraft einer KI-gestützten Anomalieerkennung

steht und fällt mit den verfügbaren Daten. Deshalb gilt es zunächst, sorgfäl-

tig zu definieren, welche Daten benötigt werden, wie umfangreich diese

sein müssen und in welcher Form sie vorliegen sollten. Generell gilt: Je bes-

ser und vollständiger die Datenbasis, desto zuverlässiger kann die Anoma-

lieerkennung potenzielle Betrugsfälle identifizieren.

4.2 Die richtigen Voraussetzungen schaffen

111

DatentypenIm Kontext der automatischen Erkennung von Anomalien in Finanztrans-

aktionen kommen typischerweise folgende Datentypen in Betracht:

▪ Transaktionsdaten (strukturiert)

Transaktionen

im Blick

Die zentrale Datenquelle bilden hier transaktionsbezogene Daten aus

Zahlungssystemen oder Buchungsjournalen im SAP-System. Dazu gehö-

ren unter anderem:

– Datum und Uhrzeit der Transaktion

Beispiel: 25.06.2025, 14:35 Uhr

– Transaktionsbetrag und Währung

Beispiel: EUR 54,99

– Händlerkennung oder Merchant-Kategorie

Beispiel: Tankstelle, Restaurant, Online-Händler, Reisebüro

– Zahlungsmethode und Kontotyp

Beispiel: Visa-Kreditkarte, EC-Karte, Mobile Payment

– Standortdaten

Beispiel: Hamburg Innenstadt, Tankstelle München-Süd

– Kundenidentifikator (anonymisiert)

Beispiel: Kunden-ID 345987

▪ Kundendaten (strukturiert)

Kundengruppen

verstehen

Diese Daten erlauben Rückschlüsse auf das Verhalten spezifischer Kun-

dengruppen und umfassen beispielsweise:

– Demografische Daten

Beispiel: Alter, Wohnort (Stadt/Land), berufliche Tätigkeit (Student, Rent-

ner, Berufstätige)

– Kundensegmente oder Verhaltensprofile

Beispiel: Premiumkunde, Gelegenheitskunde, Intensivnutzer digitaler

Kanäle

Vergangenheit

analysieren

▪ Historische Transaktions- und Verhaltensdaten (zeitlich strukturiert)

Historische Daten sind unerlässlich, um Muster und Abweichungen ef-

fektiv zu erkennen. Typische Beispiele sind:

– Transaktionshistorie der letzten Monate/Jahre

Beispiel: Kundinnen und Kunden kaufen normalerweise werktags tags-

über zwischen 8 und 20 Uhr.

– Langzeitprofile einzelner Kundinnen und Kunden

Beispiel: Eine Kundin bzw. ein Kunde gibt monatlich durchschnittlich ca.

600 Euro aus, jeweils in einem Radius von 50 km um seinen Wohnort.

4 Anomalieerkennung in Finanztransaktionen

112

Technische Spuren

nutzen

▪ Technische Daten und Metadaten (teilweise unstrukturiert)

Darunter fallen weitere technische Parameter, die ergänzende Hinweise

geben können:

– IP-Adressen und Geräteinformationen bei Online-Transaktionen

Beispiel: Transaktion von einem unbekannten Gerät oder Standort.

– Verbindungsdaten

Beispiel: Ungewöhnliche Fehlversuche bei der Anmeldung

Externe Infos

einbeziehen

▪ Zusatzdaten aus externen Quellen (teilweise unstrukturiert)

Zur Ergänzung können externe Daten herangezogen werden, wie etwa:

– Informationen aus öffentlichen Quellen oder Bonitätsdatenbanken

Beispiel: Warnungen oder Meldungen zu gestohlenen Kreditkartenda-

ten.

– Geografische und sozioökonomische Daten

Beispiel: Regionale Statistiken zu erhöhter Betrugsaktivität.

Daten bereinigen Um KI-Modelle zur Anomalieerkennung erfolgreich zu trainieren und ein-

zusetzen, ist es unabdingbar, die Rohdaten zunächst sorgfältig aufzuberei-

ten und zu validieren. Dies beginnt mit der Datenbereinigung, bei der in-

konsistente, fehlerhafte oder unvollständige Datensätze entfernt oder

korrigiert werden, um sicherzustellen, dass das KI-Modell auf einer zuver-

lässigen Datenbasis arbeitet.

Daten normalisieren

und skalieren

Danach folgen die Normalisierung und die Skalierung der Daten: Beträge,

Zeitstempel und andere Kennzahlen müssen in eine vergleichbare Form ge-

bracht werden, damit das Modell unterschiedliche Merkmale angemessen

miteinander in Verbindung setzen kann.

Wertvolle Merkmale

hervorheben

Zudem spielt das sogenannte Feature Engineering eine entscheidende Rolle.

Dabei werden aus vorhandenen Daten neue, aussagekräftige Merkmale ge-

neriert, etwa die Anzahl der Transaktionen einer Kundin oder eines Kunden

pro Tag, durchschnittliche Ausgaben je Händlerkategorie oder zeitliche

Muster des Zahlungsverhaltens.

Die sorgfältige Auswahl, Aufbereitung und Nutzung geeigneter Daten bil-

den somit die unverzichtbare Grundlage für eine präzise und zuverlässige

KI-gestützte Anomalieerkennung.

Anomalie-

erkennung in

anderen Branchen

Doch nicht nur im Bereich der Finanztransaktionen sind solche Ansätze er-

folgsversprechend. In nahezu jeder Branche finden sich vergleichbare He-

rausforderungen, bei denen Anomalien entscheidende Hinweise auf Risi-

ken oder Probleme liefern können. In der Logistik beispielsweise können

4.2 Die richtigen Voraussetzungen schaffen

113

ungewöhnliche Materialbewegungen oder Verzögerungen in Lieferketten

auf drohende Engpässe oder Qualitätsprobleme hindeuten. In der Produk-

tion können plötzliche Abweichungen im Maschinenverhalten Vorboten

eines bevorstehenden Ausfalls oder einer verringerten Produktqualität

sein.

Unabhängig von der Branche und dem konkreten Anwendungsfall gilt je-

doch immer: Anomalien existieren überall. Entscheidend ist es, neben dem

reinen Verständnis der Daten (Data Understanding) auch das Verständnis

für den Geschäftskontext (Business Understanding) konsequent einzube-

ziehen. Nur wenn klar ist, was die verfügbaren Daten über das jeweilige

Business aussagen, welche Geschäftsprozesse sie abbilden und welche Ent-

scheidungen sie beeinflussen, lassen sich geeignete Anomalien identifizie-

ren, bewerten und entsprechend nutzen, um nachhaltige Mehrwerte zu ge-

nerieren.

4.2.2 Normal und anomal definieren

Die zentrale Frage bei der Anomalieerkennung ist: Was genau macht eine

Transaktion, ein Verhalten oder einen Datenpunkt normal oder anomal?

Diese Unterscheidung klingt zunächst einfach, doch sie ist in der Praxis eine

der komplexesten Herausforderungen im Bereich KI-gestützter Analysen.

Definition:

Anomalie

Generell gilt: Eine Anomalie ist ein Ereignis oder eine Beobachtung, die

deutlich von dem abweicht, was allgemein als typisch oder erwartet gilt.

Demgegenüber beschreibt »normal« das Verhalten oder Muster, das regel-

mäßig auftritt und somit vorhersehbar und typisch ist. Um dies zu verdeut-

lichen, betrachten wir ein einfaches Beispiel.

zBBeispiel für eine normale Datenreihe

Stellen Sie sich eine Datenreihe vor, die Tankstellen-Umsätze einer Kundin

über mehrere Wochen hinweg zeigt:

▪ Montag, 30.06.: 55 €

▪ Dienstag, 15.07.: 47 €

▪ Montag, 28.07.: 60 €

▪ Mittwoch, 13.08.: 52 €

▪ Donnerstag, 28.08.: 48 €

Dieses Muster wiederholt sich regelmäßig und spiegelt typische Tankge-

wohnheiten wider.

4 Anomalieerkennung in Finanztransaktionen

114

zB Beispiel für eine Anomalie

Plötzlich taucht an einem Mittwoch um 03 Uhr nachts eine Transaktion

von 3.000 € bei derselben Tankstelle auf. Eindeutig ungewöhnlich in Bezug

auf Betrag, Zeitpunkt und übliche Tankgewohnheiten. Genau diese Abwei-

chung kennzeichnet hier eine Anomalie.

Noise statt

Anomalie

Doch nicht jede Auffälligkeit ist zwangsläufig eine Anomalie: Der Begriff

Noise beschreibt zufällige Schwankungen in Daten, die zwar auffällig er-

scheinen, aber keine echte Bedeutung oder keinen geschäftlichen Hinter-

grund haben.

zB Beispiel für Noise

Ein Kunde, der regelmäßig 40 bis 60 € an der Tankstelle ausgibt, tankt ein-

malig für 74 €. Etwas höher als gewöhnlich, aber noch innerhalb plausibler

Schwankungen. Obwohl leicht auffällig, stellt dies eher Noise als eine ech-

te Anomalie dar.

Anomalien vom

Rauschen

unterscheiden

Damit KI-Modelle effizient arbeiten, ist es entscheidend, echte Anomalien

von einfachem Rauschen zu unterscheiden. Denn, während echte Ano-

malien häufig geschäftliche Risiken signalisieren, sind Noise-Daten zufäl-

lige Ereignisse, die nicht weiter untersucht werden müssen (siehe Abbil-

dung 4.1).

Abbildung 4.1 Noisy Data in der Gegenüberstellung zu Anomalien

Zusammenfassend gilt daher: Anomalieerkennung bedeutet, zuverlässig

zwischen relevantem und irrelevantem Verhalten unterscheiden zu kön-

nen. Dies gelingt am besten, wenn man zunächst klar definiert, was typi-

scherweise normal ist, um anschließend alle deutlichen Abweichungen

davon automatisiert und gezielt zu erfassen. Die Definition des Normalver-

haltens erfolgt dabei häufig durch statistische Analysen oder durch maschi-

4.2 Die richtigen Voraussetzungen schaffen

115

nelles Lernen, wobei etwa Schwellen- oder Grenzwerte festgelegt werden,

die bestimmte Kennzahlen nicht überschreiten dürfen. Alternativ können

Modelle trainiert werden, die Muster im Normalverhalten erkennen und

Abweichungen davon als potenzielle Anomalien markieren. Nur wenn

diese Klarheit besteht, erzeugen KI-basierte Systeme wirklichen Mehrwert

und unterstützen Entscheidungen zuverlässig – ganz gleich, ob im Finanz-

bereich, der Produktion, der Logistik oder in anderen Geschäftsbereichen.

4.2.3 Den passenden Algorithmus auswählen

Vielfalt statt

Standardlösung

Wenn Sie einen geeigneten Algorithmus zur Anomalieerkennung finden

möchten, können Sie aus einer großen Vielfalt potenzieller Methoden wäh-

len. Von einfachen statistischen Verfahren über Machine-Learning-basierte

Ansätze bis hin zu komplexen Deep-Learning-Modellen gibt es zahlreiche

Möglichkeiten, Auffälligkeiten in Daten automatisiert zu identifizieren. Da-

bei sollten Sie sich vor Augen führen: Den einen perfekten Algorithmus gibt

es nicht. Die Wahl hängt immer von der jeweiligen Problemstellung, dem

Umfang und der Qualität der Daten sowie den konkreten Anforderungen

des Unternehmens ab.

Klassische

statistische

Verfahren

Zu den traditionellen statistischen Methoden zählen zum Beispiel Verfah-

ren wie Mittelwertvergleiche, Z-Score-Analysen, Standardabweichungen

oder Benford-Analysen. Diese Verfahren sind besonders effektiv, wenn die

Daten weitgehend stabil sind und klare, statistisch messbare Grenzwerte

existieren.

Vor- und NachteileStatistische Verfahren sind schnell implementierbar und leicht interpre-

tierbar. Allerdings funktionieren sie nur bei definierten und stationären

Datenmustern. Dynamische oder komplexe Datenmuster werden oft nur

unzureichend erkannt. Klassische statistische Verfahren eignen sich bei-

spielsweise für die Erkennung von ungewöhnlich hohen Überweisungen,

wenn diese regelmäßig festgelegte Grenzwerte (z. B. dreifache Standard-

abweichung vom Durchschnittsbetrag) überschreiten.

ML-Verfahren

als Allrounder

Algorithmen wie Decision Trees, Random Forests, XGBoost oder Isolation

Forest haben sich als besonders vielseitige Ansätze erwiesen und dominie-

ren sogar oft in Hackathons oder Data Challenges. Diese Modelle lernen

komplexe Muster und Abweichungen aus historischen Daten. Im Folgen-

den stellen wir Ihnen diese vier Ansätze vor.

Decision Trees und

Random Forests

Decision Trees und Random Forests nutzen baumartige Entscheidungsre-

geln, um Daten zu klassifizieren. Ein Decision Tree trifft Entscheidungen an-

hand einfacher Ja-/Nein-Fragen (»Ist der Betrag größer als 100 €?«, »Erfolgt

die Zahlung nachts?«). Random Forests erweitern dieses Prinzip, indem

4 Anomalieerkennung in Finanztransaktionen

116

mehrere Entscheidungsbäume kombiniert und deren Ergebnisse aggre-

giert werden, um robustere und präzisere Ergebnisse zu erzielen (siehe Ab-

bildung 4.2).

Abbildung 4.2 Decision Tree vs. Random Forest

Einsatzgebiete Typische Einsatzgebiete sind Kreditwürdigkeitsprüfung, Risikobewertun-

gen, Kundensegmentierungen sowie Entscheidungsunterstützung bei ope-

rativen Prozessen wie Kundenservice und Vertragsmanagement. Aufgrund

der einfachen Interpretierbarkeit und der schnellen Umsetzung eignen sie

sich zudem hervorragend für initiale Machbarkeitsanalysen und Pilotpro-

jekte im Kontext von Predictive Analytics.

Vor- und Nachteile Die beiden Verfahren treffen transparente und nachvollziehbare Entschei-

dungen und bieten eine gute Performance insbesondere bei tabellarischen

Daten. Allerdings besteht bei ihnen auch die Gefahr des Überanpassens

(Overfitting) bei zu kleinen oder zu spezifischen Trainingsdatensätzen.

XGBoost XGBoost (Extreme Gradient Boosting) ist ein leistungsstarker Machine-

Learning-Algorithmus, der auf dem Prinzip des Gradient-Boosting basiert.

Dabei werden mehrere schwächere Entscheidungsbäume sequenziell so

trainiert, dass jeder neue Baum gezielt die Fehler der vorherigen korrigiert.

Dadurch entsteht ein äußerst präzises und leistungsfähiges Modell. XG-

Boost ist optimal für komplexere und datenintensivere Szenarien, bei de-

nen es auf höchste Genauigkeit und Vorhersageleistung ankommt.

Einsatzbereiche Typische Einsatzbereiche sind beispielsweise Betrugserkennung in Finanz-

daten, Vorhersagen von Kundenverhalten (Churn-Prediction), dynamische

Preisanpassungen oder komplexe Risikovorhersagen. XGBoost zeigt seine

Stärke besonders dann, wenn sehr umfangreiche historische Datensätze

mit vielen Merkmalen vorliegen. Allerdings erfordert der Einsatz von XG-

Boost ein gewisses Maß an Erfahrung beim Tuning und bei der Optimierung

der Modelle, um bestmögliche Ergebnisse zu erzielen.

Vor- und Nachteile Zu den Vorteilen von XGBoost gehören eine hohe Genauigkeit und Anpass-

barkeit und eine besonders hohe Effizienz bei großen Datenmengen. Aller-

Decision Tree Random Forest

4.2 Die richtigen Voraussetzungen schaffen

117

dings ist XGBoost auch sehr komplex und bedarf eines höheren Aufwands

im Finetuning, also dem Finden der optimalen Parametereinstellungen.

Isolation ForestDer Isolation Forest wurde speziell für die Anomalieerkennung entwickelt

und basiert auf dem Konzept, dass Anomalien einfacher und schneller von

anderen Datenpunkten isoliert werden können, indem man sie durch zu-

fällige Teilungen der Datenmenge separiert (siehe Abbildung 4.3). Daten-

punkte, die sich schnell isolieren lassen, gelten als potenzielle Anomalien.

Damit sind sie ideal für Szenarien geeignet, bei denen es primär um die Er-

kennung ungewöhnlicher Ereignisse geht, ohne dass zuvor definierte auf-

fällige Muster existieren.

Abbildung 4.3 Darstellung der Funktionsweise eines Isolation Forests

EinsatzbereicheKonkrete Anwendungsbeispiele sind die Erkennung betrügerischer Finanz-

transaktionen, das automatische Aufspüren fehlerhafter Buchungen in

SAP-Systemen, die Überwachung von Produktionsprozessen auf unge-

wöhnliche Maschinendaten oder die Analyse von IT-Systemen zur frühzei-

tigen Erkennung von Cyberangriffen.

Vor- und NachteileDer Isolation Forest wurde speziell für die Anomalieerkennung entwickelt

und benötigt keine zuvor gelabelten Daten (unsupervised Verfahren). Er

verliert bei extrem hochdimensionalen oder stark verrauschten Daten al-

lerdings an Präzision und ist anfällig für Noise (zufällige Schwankungen).

Deep-Learning-

Verfahren für

komplexere

Zusammenhänge

Deep-Learning-Ansätze, insbesondere Autoencoder, rekurrente neuronale

Netze (RNN, speziell LSTM) und Transformer-Modelle, eignen sich vor allem

für komplexe Datenstrukturen, zeitliche Abfolgen oder sehr große Daten-

mengen. Diese Algorithmen basieren auf künstlichen neuronalen Netzen

mit vielen hintereinander geschalteten Schichten (also tiefen Architektu-

ren), die aus großen Mengen an Trainingsdaten eigenständig Muster und

komplexe Zusammenhänge erlernen können.

AutoencoderAutoencoder sind spezielle neuronale Netze, die darauf ausgelegt sind, Ein-

gabedaten zunächst auf eine stark komprimierte, sogenannte latente Re-

präsentation zu reduzieren (Encoding) und anschließend wieder originalge-

Isolation einer
Anomalie

Isolation eines
»normalen« Datenpunktes

4 Anomalieerkennung in Finanztransaktionen

118

treu zu rekonstruieren (Decoding). Autoencoder folgen dem Grundprinzip,

typische Muster sehr genau zu rekonstruieren, während Anomalien oder

untypische Muster schlecht rekonstruiert werden. Diese Rekonstruktions-

fehler werden genutzt, um Anomalien zu erkennen – hohe Fehlerwerte wei-

sen dabei auf eine potenzielle Anomalie hin.

Einsatzgebiete Typische Einsatzgebiete sind Betrugserkennung im Zahlungsverkehr, bei

dem viele verschiedene Transaktionsmerkmale (z. B. Zeit, Ort, Betrag, Händ-

ler) gleichzeitig analysiert werden. Auch bei der Überwachung technischer

Systeme, beispielsweise von Maschinenparks in der Produktion oder IT-Sys-

temen in Rechenzentren, liefern Autoencoder hervorragende Ergebnisse,

indem sie kleinste Abweichungen vom Normalverhalten automatisiert er-

kennen. Ein weiterer typischer Anwendungsfall ist die Qualitätskontrolle,

beispielsweise die automatisierte Inspektion von Produkten mittels Kame-

ras und Bildverarbeitung: Autoencoder erkennen zuverlässig fehlerhafte

oder abweichende Produkte allein durch die Analyse visueller Muster.

Vor- und Nachteile Autoencoder sind sehr effektiv bei komplexen Mustern und hochdimensi-

onalen Daten, sie lernen automatisch, was als typisches Verhalten gilt, ohne

dass explizit Anomalien gezeigt werden müssen. Allerdings erfordern sie

vergleichsweise große Mengen sauberer Trainingsdaten sowie tiefergehen-

des technisches Know-how in Bezug auf neuronale Netze und deren Opti-

mierung.

Rekurrente

neurale Netze

Rekurrente neuronale Netze (RNNs), insbesondere Long-Short-Term-Memo-

ry-Netze (LSTM-Netze), sind auf die Verarbeitung sequenzieller oder zeitli-

cher Daten spezialisiert. Ihre besondere Stärke liegt darin, Zusammenhänge

und Muster über Zeiträume hinweg zu erkennen und Informationen im Ge-

dächtnis zu behalten. Das ermöglicht es, untypische Abfolgen oder unge-

wöhnliche zeitliche Entwicklungen schnell zu identifizieren. Ein LSTM-Netz

erkennt beispielsweise, wenn sich ein normalerweise stabiles Zahlungsver-

halten einer Kundin oder eines Kunden plötzlich stark verändert, etwa

durch unerwartete Transaktionen in ungewöhnlichen zeitlichen Mustern.

Sie sind besonders effektiv in Szenarien, in denen zeitliche Abfolgen oder

historische Entwicklungen eine entscheidende Rolle spielen.

Einsatzgebiete Typische Anwendungsfälle sind etwa die kontinuierliche Analyse von Fi-

nanztransaktionen, um plötzliche Änderungen in Zahlungsverhalten früh-

zeitig zu erkennen. Auch die vorausschauende Wartung (Predictive Main-

tenance) komplexer Maschinen und Anlagen basiert häufig auf LSTM-

Netzen, da diese frühzeitig auf ungewöhnliche Abweichungen in Sensorda-

ten reagieren können. In der Logistik eignen sich LSTM-Modelle sehr gut zur

Prognose von Nachfrage- oder Lieferkettenstörungen, indem sie kontinu-

4.2 Die richtigen Voraussetzungen schaffen

119

ierlich und automatisiert ungewöhnliche Muster in der Lieferhistorie oder

im Bestellverhalten erkennen und rechtzeitig Warnungen generieren.

Vor- und NachteileLSTM-Netze sind hervorragend geeignet, um Muster in zeitlichen Abfolgen

zu erkennen und besonders effektiv bei der frühzeitigen Identifikation von

Veränderungen im Verhalten über längere Zeiträume hinweg. Sie haben al-

lerdings auch einen hohen Ressourcenbedarf hinsichtlich Rechenleistung

und qualitativ hochwertiger Daten. Sie sind außerdem anspruchsvoll in der

Implementierung, Wartung und Optimierung.

Transformer-

Modelle

Transformer-Modelle haben in den letzten Jahren insbesondere im Bereich

Natural Language Processing (NLP) stark an Bedeutung gewonnen, werden

aber zunehmend auch zur Anomalieerkennung eingesetzt. Im Gegensatz

zu rekurrenten Netzen verwenden Transformer sogenannte Attention-Me-

chanismen, um Zusammenhänge in Datenfolgen zu erkennen. Dabei be-

rechnen sie, welche Datenelemente in einer Sequenz besonders relevant

sind, und richten ihre Aufmerksamkeit gezielt darauf. Gerade bei komple-

xen zeitlichen Mustern oder großen Datenmengen zeigen Transformer oft

eine überlegene Leistung, weil sie Langzeitabhängigkeiten noch präziser

und effizienter erkennen können als klassische RNN- oder LSTM-Ansätze.

EinsatzgebieteUrsprünglich im Bereich des NLP populär geworden, erweisen sie sich

zunehmend auch in Bereichen wie Finanzmarktanalysen, Anomalie-

erkennung in IT-Netzwerken (Cybersecurity) und komplexen Vorhersage-

Szenarien wie Absatz- oder Bedarfsplanung als äußerst effektiv. In der Fi-

nanzindustrie etwa ermöglichen Transformer die genaue Erkennung un-

gewöhnlicher Verhaltensmuster, selbst wenn diese über lange Zeiträume

verteilt auftreten. Ebenso profitieren Unternehmen mit komplexen Liefer-

ketten von Transformer-Modellen, da sie subtile Veränderungen im globa-

len Liefernetzwerk präzise erkennen und frühzeitig auf Störungen hinwei-

sen können.

Vor- und NachteileTransformer-Modelle bieten eine exzellente Erkennung komplexer Muster

und Langzeitabhängigkeiten, eine effiziente Verarbeitung paralleler Daten

sowie sehr gute Skalierbarkeit bei großen Datensätzen. Sie erfordern aller-

dings auch umfangreiche Trainingsdaten und eine hohe Rechenleistung.

Die Modelle sind außerdem komplexer zu implementieren und erfordern

tiefgehendes technisches Know-how.

LSTM- oder

Transformer-

Modell?

Die Wahl zwischen LSTM- und Transformer-Modellen hängt stark vom

konkreten Anwendungsfall und den verfügbaren Ressourcen ab. Während

LSTMs bewährte und robuste Ansätze bieten, glänzen Transformer insbe-

sondere dann, wenn sehr komplexe Zusammenhänge oder besonders lange

Zeiträume betrachtet werden sollen.

4 Anomalieerkennung in Finanztransaktionen

120

Den passenden

Algorithmus

auswählen

Bei der Wahl des richtigen Algorithmus sind stets der konkrete Business-

Kontext sowie die verfügbare Datenbasis entscheidend. Ein eher statischer

Geschäftskontext mit klar definierten Regeln profitiert von einfachen sta-

tistischen Methoden oder klassischen Machine-Learning-Modellen. Kom-

plexe, dynamische Umfelder oder sehr große, unstrukturierte Datenmen-

gen profitieren hingegen stark von Deep-Learning-Verfahren. Häufig zeigt

sich in der Praxis, dass eine Kombination mehrerer Ansätze die besten Er-

gebnisse liefert.

Passgenau statt

möglichst komplex

Zusammenfassend gilt deshalb: Nicht der komplexeste Algorithmus ge-

winnt automatisch, sondern derjenige, der am besten auf das konkrete Ge-

schäftsumfeld, die Qualität und Struktur der Daten und die spezifischen

Ziele der Anomalieerkennung abgestimmt ist. Die Auswahl ist daher immer

eine bewusste Abwägung der jeweiligen Vor- und Nachteile unter Berück-

sichtigung der individuellen Rahmenbedingungen.

Datengrundlage der

SecureBank AG

Ein gutes Beispiel dafür ist die SecureBank AG: Sie möchte historische

Transaktionsdaten mithilfe eines Isolation Forests analysieren, um ver-

dächtige Transaktionen automatisch aufzudecken. Die Entscheidung für

dieses vergleichsweise schlanke Verfahren wurde bewusst getroffen – ge-

rade weil die zugrunde liegenden Daten sehr strukturiert vorliegen. Die

SecureBank verfügt über eine umfangreiche Historie an Transaktionsdaten,

die typischerweise in einem SAP-System gespeichert und verwaltet werden.

Diese Daten enthalten Informationen wie den Zeitpunkt der Transaktion

(Wochentag, Uhrzeit), den Betrag, die Händlerkategorie (zum Beispiel Le-

bensmittelgeschäft, Elektronikhändler oaxder Restaurant) sowie die Infor-

mation, ob es sich tatsächlich um eine betrügerische Transaktion handelte

oder nicht (siehe Tabelle 4.1).

Angesichts dieser klar strukturierten und wenig hochdimensionalen Daten

war der Einsatz klassischer Machine-Learning-Verfahren wie Isolation For-

transaction_id amount (€) weekday hour category is_fraud

521 60.87 Fri 14 Electronics 0

737 69.65 Sat 9 Groceries 0

740 13.18 Mon 11 Electronics 0

411 2731.51 Sun 11 Groceries 1

636 66.46 Sun 14 Electronics 0

Tabelle 4.1 Historischen Transaktionsdaten inklusive Klassifikation (Anomalie/

keine Anomalie)

4.3 Technische Umsetzung

121

est nicht nur ausreichend, sondern auch effizient. Der Vorteil: Solche Mo-

delle liefern schnelle und gut interpretierbare Ergebnisse bei gleichzeitig

geringem Ressourcenaufwand. Für die SecureBank bedeutete dies einen

pragmatischen und risikoarmen Einstieg in die Anomalieerkennung – ohne

direkt mit »Kanonen auf Spatzen zu schießen«. Dies ist ein Vorgehen, das

sich auch für viele andere Unternehmen empfiehlt, bevor in aufwendigere

Modellarchitekturen investiert wird.

4.3 Technische Umsetzung

Nachdem Sie nun die theoretischen Grundlagen und Einsatzmöglichkeiten

verschiedener Algorithmen zur Anomalieerkennung kennengelernt haben,

geht es nun an die praktische Umsetzung.

Inhalt dieses

Abschnitts

Wie kann die SecureBank AG nun mithilfe eines Isolation Forests automati-

siert Anomalien in ihren Daten erkennen? In den folgenden Abschnitten

zeigen wir Schritt für Schritt, wie Sie ein solches Modell vorbereiten, trainie-

ren und effektiv einsetzen können, um betrügerische Transaktionen zu

identifizieren, bevor ein Schaden entsteht. Angefangen bei der Datenvorbe-

reitung und Modellentwicklung in Python auf Ihrem lokalen Rechner bis

hin zur skalierbaren und cloudbasierten Bereitstellung Ihres Modells als

API. Anhand konkreter Codebeispiele, Dockerfiles und Konfigurationsda-

teien lernen Sie, wie Sie Ihre KI-Lösung stabil und effizient in Ihre SAP-In-

frastruktur integrieren und produktiv einsetzen können.

Zunächst wird in Abschnitt 4.3.1 gezeigt, wie ein Isolation Forest in Python

implementiert und auf die strukturierten Transaktionsdaten der Secure-

Bank AG angewendet werden kann. Darauf aufbauend wird in Abschnitt

4.3.2 erläutert, wie sich das trainierte Modell in eine REST-API überführen

lässt, um es programmgesteuert abfragen zu können. Im anschließenden

Abschnitt 4.3.3 bereiten wir eine Docker-Umgebung vor, die sowohl das

Training als auch das Deployment der API kapselt und damit eine saubere

und wiederholbare Ausführung gewährleistet. In Abschnitt 4.3.4 zeigen wir,

wie sich diese Umgebung in automatisierte Workflows überführen lässt –

mithilfe von ArgoFlows in SAP AI Core. Den Abschluss bildet Abschnitt 4.3.5,

in dem Sie lernen, wie Sie den so erstellten KI-Service mit KServe produktiv

in SAP AI Core bereitstellen und damit nahtlos in bestehende Geschäftspro-

zesse integrieren können.

So entsteht ein vollständiger End-to-End-Prozess – von der ersten Idee bis

zur skalierbaren und wartbaren KI-Lösung im SAP-Umfeld.

4 Anomalieerkennung in Finanztransaktionen

122

Lokale Entwicklung vs. Cloud-Entwicklung bei KI-Modellen

Bei der Entwicklung von KI-Modellen stellt sich oft die Frage: Sollte ich zu-

nächst lokal arbeiten oder direkt auf eine cloudbasierte Umgebung wie die

SAP Business Technology Platform (BTP) setzen?

Lokale Entwicklung bietet sich vor allem in frühen Projektphasen an, wenn

Sie schnell erste Experimente durchführen, verschiedene Algorithmen aus-

probieren und unmittelbare Ergebnisse sehen möchten. Lokales Arbeiten

ist ideal für kleinere Datensätze, Prototypenentwicklung und schnelles, ite-

ratives Arbeiten – und es benötigt anfangs keine aufwendige Einrichtung

oder Cloud-Infrastruktur.

Cloud-Entwicklung empfiehlt sich, sobald die Datensätze groß werden, kom-

plexe Modelle trainiert werden müssen oder eine Integration in produktive

SAP-Umgebungen geplant ist. Die Cloud bietet Ihnen skalierbare Ressourcen,

professionelle Infrastruktur und nahtlose Integration in bestehende Unter-

nehmensprozesse. Außerdem erleichtert sie kollaborative Arbeit und sorgt

für bessere Nachvollziehbarkeit und Wartbarkeit Ihrer KI-Lösungen.

Faustregel: Starten Sie lokal, um Ideen schnell zu validieren, und wechseln

Sie zur Cloud, sobald es darum geht, Ihr KI-Modell produktiv, skalierbar und

dauerhaft in Ihre Geschäftsprozesse einzubinden.

Dabei startet die SecureBank AG zunächst lokal: Das bedeutet, wir entwi-

ckeln, trainieren und evaluieren den Isolation Forest zunächst in einer loka-

len Umgebung, beispielsweise auf einem Notebook oder PC. Dieser lokale

Start ermöglicht es, schnell erste Ergebnisse zu erzielen, Parameter einfach

anzupassen und unmittelbares Feedback zur Modellqualität zu erhalten.

4.3.1 Isolation Forest implementieren

Bibliotheken

importieren

Wir starten mit der Implementierung eines Algorithmus, in diesem Fall Iso-

lation Forests, in Python. Ziel ist die Erstellung und das Training eines

Modells, das in der Lage ist, Anomalien in Transaktionsdaten zu erkennen.

Wie im Python-Universum generell üblich, können verschiedene Pakete

genutzt werden, um bestimmte Funktionalitäten abzubilden (siehe Lis-

ting 4.1).

import pandas as pd
from sklearn.ensemble import IsolationForest
from sklearn.preprocessing import LabelEncoder
import pickle

Listing 4.1 Bibliotheken importieren

4.3 Technische Umsetzung

123

Python-

Bibliotheken

Importieren Sie diese notwendige Python-Bibliotheken:

▪ pandas für die Datenverarbeitung und Verwaltung in tabellarischer Form

▪ IsolationForest (aus scikit-learn) als Algorithmus zur Anomalie-

erkennung

▪ LabelEncoder (ebenfalls aus scikit-learn) zur Umwandlung kategori-

scher Daten in numerische Werte

▪ pickle, um das trainierte Modell und Encoder zu speichern und später

wiederverwenden zu können

CSV-Datensatz

laden

Laden Sie den CSV-Datensatz mit synthetischen Finanztransaktionen und

speichern Sie ihn in einem DataFrame df:

df = pd.read_csv("/app/src/synthetic_financial_transactions.csv")

Dies bildet die Grundlage für die nachfolgende Analyse und Modellentwick-

lung.

Kategorische Daten

umwandeln

Der Isolation-Forest-Algorithmus benötigt numerische Eingabedaten.

Übersetzen Sie deshalb kategorische Merkmale wie weekday (Wochentag)

und merchant_category (Händlerkategorie) mittels LabelEncoder in numeri-

sche Werte (siehe Listing 4.2).

le_weekday = LabelEncoder()
le_category = LabelEncoder()

df['weekday_enc'] = le_weekday.fit_transform(df['weekday'])
df['merchant_category_enc'] = le_category.fit_transform(df['merchant_
category'])

Listing 4.2 Vorverarbeitung – kategorische Daten umwandeln

Relevante Features

auswählen

Speichen Sie diese neuen numerischen Features anschließend als zusätzli-

che Spalten im DataFrame (siehe Listing 4.3).

features = ['amount', 'hour', 'weekday_enc', 'merchant_category_enc']
X = df[features]

Listing 4.3 Relevante Features auswählen

Isolation Forest

initialisieren und

trainieren

Wählen Sie nun aus dem vollständigen Datensatz gezielt diejenigen Spalten

aus, die das KI-Modell verwenden soll, um Anomalien zu erkennen (siehe

Listing 4.4). Das Ergebnis ist eine Feature-Matrix X, die für das Training ver-

wendet wird.

4 Anomalieerkennung in Finanztransaktionen

124

iso_forest = IsolationForest(contamination=0.02, random_state=42)
iso_forest.fit(X)

Listing 4.4 Isolation Forest initialisieren und trainieren

Der Isolation Forest wird in diesem Fall mit zwei Parametern initialisiert:

▪ contamination=0.02: Gibt an, welcher Anteil der Daten als anomal erwar-

tet wird (in diese Fall 2 %).

▪ Random_state=42: Sorgt für die Reproduzierbarkeit der Ergebnisse durch

das Setzen eines Seeds.

Modell trainieren Anschließend trainieren Sie das Modell mit den ausgewählten Features, wo-

durch es lernt, was typische Muster in den Transaktionen sind.

Modell speichern Um das trainierte Modell nicht bei jedem Einsatz erneut trainieren zu müs-

sen, wird es mittels pickle dauerhaft gespeichert (also persistiert). Neben

dem Modell werden auch die verwendeten LabelEncoder gespeichert, um

später neue Daten entsprechend zu verarbeiten (siehe Listing 4.5).

with open("/app/src/isolation_forest_model.pkl", "wb") as f:
pickle.dump(iso_forest, f)

with open("/app/src/label_encoders.pkl", "wb") as f:
pickle.dump({'le_weekday': le_weekday, 'le_category':
le_category}, f)

Listing 4.5 Modell speichern (Persistenz)

Vorhersagen

generieren

In Listing 4.6 sehen Sie, wie das gespeicherte Modell wieder geladen und auf

neue oder bestehende Daten angewendet werden kann. Das Modell gene-

riert hierbei eine Vorhersage (anomaly_score):

▪ -1 bedeutet, dass die Transaktion als Anomalie erkannt wurde.

▪ 1 bedeutet, dass die Transaktion normal ist.

Zusätzlich wird eine binäre Spalte anomaly_detected eingeführt, die eine

schnelle Übersicht darüber gibt, ob eine Anomalie erkannt wurde (1) oder

nicht (0).

with open("/app/src/isolation_forest_model.pkl", "rb") as f:
loaded_model = pickle.load(f)

with open("/app/src/label_encoders.pkl", "rb") as f:
encoders = pickle.load(f)

le_weekday = encoders['le_weekday']

4.3 Technische Umsetzung

125

le_category = encoders['le_category']

df['anomaly_score'] = loaded_model.predict(X)
df['anomaly_detected'] = (df['anomaly_score'] == -1).astype(int)
print(df.head())
print("Training abgeschlossen!")

Listing 4.6 Modell laden und anwenden (optional)

Das gesamte Skript

in der Übersicht

In Listing 4.7 sehen Sie das gesamte Skript mit allen besprochenen Elemen-

ten. Sie finden es ebenfalls im Download-Material dieses Buchs unter

www.sap-press.de/6149.

import pandas as pd
from sklearn.ensemble import IsolationForest
from sklearn.preprocessing import LabelEncoder
import pickle

1. Daten laden
df = pd.read_csv("/app/src/synthetic_financial_transactions.csv")

2. Vorverarbeitung: Kategorische Daten in Zahlen umwandeln
le_weekday = LabelEncoder()
le_category = LabelEncoder()
df['weekday_enc'] = le_weekday.fit_transform(df['weekday'])
df['merchant_category_enc'] = le_category.fit_transform(df['merchant_
category'])

3. Features für das Modell auswählen
features = ['amount', 'hour', 'weekday_enc', 'merchant_category_enc']
X = df[features]

4. Isolation Forest initialisieren und trainieren
iso_forest = IsolationForest(contamination=0.02, random_state=42)
iso_forest.fit(X)

5. Modell mit pickle speichern
with open("/app/src/isolation_forest_model.pkl", "wb") as f:

pickle.dump(iso_forest, f)

6. LabelEncoder ebenfalls speichern
with open("/app/src/label_encoders.pkl", "wb") as f:

pickle.dump({'le_weekday': le_weekday, 'le_category':
le_category}, f)

4 Anomalieerkennung in Finanztransaktionen

126

7. Optional: Modell laden und anwenden
with open("/app/src/isolation_forest_model.pkl", "rb") as f:

loaded_model = pickle.load(f)
with open("/app/src/label_encoders.pkl", "rb") as f:

encoders = pickle.load(f)

le_weekday = encoders['le_weekday']
le_category = encoders['le_category']

df['anomaly_score'] = loaded_model.predict(X)
df['anomaly_detected'] = (df['anomaly_score'] == -1).astype(int)
print(df.head())
print("Training abgeschlossen!")

Listing 4.7 Gesamtes Skript zur Erstellung und zum Training des Isolation Forests

(»predictor.py«)

Optinal: S3-Bucket

verwenden

In diesem einfachen Beispiel wird das Modell zunächst lokal gespeichert.

Möglich wäre es auch, das Modell nach dem abgeschlossenen Training in ei-

nen Object Storage (S3-Bucket) in die SAP BTP zu laden, um das Modell dort

in weiteren Services zu nutzen. Gleichermaßen könnten auch die Daten

nicht lokal, sondern aus einem S3-Bucket geladen werden.

Dieser Programmcode bietet eine vollständige Pipeline für die Erkennung

von Anomalien in Finanztransaktionen. Er umfasst das Laden und Vorbe-

reiten der Daten, das Training eines Isolation-Forest-Modells, dessen Spei-

cherung sowie die anschließende Nutzung des gespeicherten Modells zur

Anomalieerkennung in neuen Daten. Die hier gezeigte Methode ist exem-

plarisch für den Einsatz von Machine Learning in der Praxis und lässt sich

flexibel auf ähnliche Szenarien übertragen.

4.3.2 API entwickeln

Um das trainierte Modell nun wirklich nutzen zu können, wird ein Service

oder eine API benötigt, um neue Daten hinsichtlich ihrer Anomalität zu

prüfen. Auch dieser Service wird zunächst lokal implementiert, um ihn

dann im weiteren Verlauf in der Cloud zu deployen.

Benötigte Python-

Bibliotheken laden

Laden Sie zunächst die benötigten Python-Bibliotheken (siehe Listing 4.8):

▪ pickle ermöglicht das Laden des gespeicherten Machine-Learning-

Modells.

▪ FastAPI ist ein Framework zur schnellen Erstellung von REST-APIs.

4.3 Technische Umsetzung

127

▪ pydantic stellt sicher, dass die übermittelten Daten eine definierte Struk-

tur und Datentypen einhalten.

▪ pandas erleichtert das Handling der Daten in Form von Tabellen

(DataFrames).

import pickle
from fastapi import FastAPI
from pydantic import BaseModel
from typing import List
import pandas as pd

Listing 4.8 Bibliotheken und Module importieren

Isolation-Forest-

Modell und

LabelEncoder laden

Laden Sie nun das zuvor gespeicherte Isolation-Forest-Modell sowie die

LabelEncoder, die für die Verarbeitung neuer Transaktionsdaten benötigt

werden (siehe Listing 4.9). Dies ermöglicht eine konsistente Verarbeitung

von neuen Eingabedaten und gewährleistet, dass neue Transaktionen exakt

so verarbeitet werden wie beim ursprünglichen Training.

with open("/app/src/isolation_forest_model.pkl", "rb") as f:
model = pickle.load(f)

with open("/app/src/label_encoders.pkl", "rb") as f:
encoders = pickle.load(f)

le_weekday = encoders['le_weekday']
le_category = encoders['le_category']

Listing 4.9 Isolation-Forest-Modell und LabelEncoder laden

API und

Datenstruktur

definieren

Initialisieren Sie die API (FastAPI). Anschließend definieren Sie mithilfe von

pydantic zwei Datenmodelle (siehe Listing 4.10):

▪ Transaction beschreibt die Struktur einer einzelnen Finanztransaktion.

▪ Transactions ermöglicht die Verarbeitung einer Liste mehrerer Transak-

tionen gleichzeitig.

Diese Modelle sorgen dafür, dass alle Daten, die an die API geschickt werden,

eine festgelegte und validierte Struktur haben.

app = FastAPI()

class Transaction(BaseModel):
amount: float
hour: int

4 Anomalieerkennung in Finanztransaktionen

128

weekday: str
merchant_category: str

class Transactions(BaseModel):
data: List[Transaction]

Listing 4.10 API und Datenstruktur definieren

API-Endpunkt

definieren

Bei der Definition der API-Endpunkte ist besonders wichtig, dass diese stets

über eine Versionsnummer "/v<Nummer>/" verfügen müssen (siehe Listing

4.11). Andernfalls sind diese im späteren Deployment nicht nutzbar. Der

Healthcheck-Endpunkt dient dazu, schnell zu überprüfen, ob die API erreich-

bar ist und ordnungsgemäß läuft. Dies ist insbesondere in Produktionsum-

gebungen von großer Bedeutung.

@app.get("/v2/health")
def health():
 return {"status": "ok"}

Listing 4.11 Healthcheck-Endpunkt der API

Prediction-

Endpunkt

implementieren

Der Prediction-Endpunkt ist ebenfalls von zentraler Bedeutung für die API:

Er ermöglicht die eigentliche Anomalieerkennung (siehe Listing 4.12):

▪ Wandeln Sie zunächst die empfangenen Transaktionen in ein pandas-

DataFrame um, um eine effiziente Verarbeitung zu ermöglichen.

▪ Wandeln Sie anschließend die kategorischen Merkmale (weekday und

merchant_category) mithilfe der zuvor geladenen LabelEncoder um. Da-

durch wird gewährleistet, dass die Daten exakt auf dieselbe Weise verar-

beitet werden wie beim Modelltraining.

▪ Das Isolation-Forest-Modell generiert anschließend eine Vorhersage

(predict) für jede Transaktion mit den folgenden Werten:

– -1 (Anomalie erkannt)

– 1 (normale Transaktion)

▪ Diese Ergebnisse werden dann in eine eindeutige, einfach interpretier-

bare Binärform (anomaly_detected: 1 oder 0) umgewandelt.

▪ Zuletzt werden sowohl die ursprünglichen Eingabedaten als auch das Er-

gebnis der Anomalieerkennung strukturiert zurückgegeben.

@app.post("/v2/predict")
def predict(transactions: Transactions):

df = pd.DataFrame([t.dict() for t in transactions.data])

4.3 Technische Umsetzung

129

Encodieren der Eingabedaten analog zum Training
df['weekday_enc'] = le_weekday.transform(df['weekday'])
df['merchant_category_enc'] = le_category.transform(df['merchant_
category'])

X = df[['amount', 'hour', 'weekday_enc',
'merchant_category_enc']]
preds = model.predict(X)
anomaly = (preds == -1).astype(int)

result = []
for idx, t in enumerate(transactions.data):

result.append({
"input": t.dict(),
"anomaly_detected": int(anomaly[idx])

})

return {"predictions": result}

Listing 4.12 Prediction-Endpunkt implementieren

Diese API stellt ein produktionsfähiges Interface zur Verfügung, das es

erlaubt, Anomalien in Finanztransaktionen automatisiert zu erkennen.

Der bereitgestellte Endpoint /v2/predict empfängt Transaktionsdaten im

JSON-Format, verarbeitet sie genau wie im Modelltraining und liefert an-

schließend unmittelbar eine eindeutige Aussage über potenzielle Anoma-

lien.

Das gesamte Skript

in der Übersicht

In Listing 4.13 sehen Sie das gesamte Skript mit allen besprochenen Elemen-

ten. Sie finden es ebenfalls im Download-Material dieses Buchs unter

www.sap-press.de/6149.

import pickle
from fastapi import FastAPI
from pydantic import BaseModel
from typing import List
import pandas as pd

Modell und LabelEncoder laden
with open("/app/src/isolation_forest_model.pkl", "rb") as f:

model = pickle.load(f)
with open("/app/src/label_encoders.pkl", "rb") as f:

encoders = pickle.load(f)
le_weekday = encoders['le_weekday']

4 Anomalieerkennung in Finanztransaktionen

130

le_category = encoders['le_category']

app = FastAPI()

Datenmodell für Input
class Transaction(BaseModel):

amount: float
hour: int
weekday: str
merchant_category: str

class Transactions(BaseModel):
data: List[Transaction]

@app.get("/v2/health")
def health():

return {"status": "ok"}

@app.post("/v2/predict")
def predict(transactions: Transactions):

Eingabedaten in DataFrame
df = pd.DataFrame([t.dict() for t in transactions.data])

Encodieren wie im Training
df['weekday_enc'] = le_weekday.transform(df['weekday'])
df['merchant_category_enc'] = le_category.transform(df['merchant_
category'])

X = df[['amount', 'hour', 'weekday_enc',
'merchant_category_enc']]
preds = model.predict(X)
anomaly = (preds == -1).astype(int)

Ergebnisse zurückgeben
result = []
for idx, t in enumerate(transactions.data):

result.append({
"input": t.dict(),
"anomaly_detected": int(anomaly[idx])

})

return {"predictions": result}

Listing 4.13 Skript für die API (»main.py«)

4.3 Technische Umsetzung

131

Durch diese API-Lösung können Sie das lokal entwickelte KI-Modell effektiv

in eine cloudbasierte Infrastruktur wie die SAP BTP integrieren und nahtlos

in bestehende Geschäftsprozesse einbinden.

4.3.3 Docker-Umgebung für das Training und Deployment

der API vorbereiten

Dockerfile erstellenSie können das Training der Anomalieerkennung nun lokal und manuell

starten. Dies kann entweder über die predictor.py-Datei oder – und dieser

Weg ist flexibler –über einen Docker-Container erfolgen. Der Docker-Con-

tainer kann dann lokal oder auf der SAP BTP genutzt werden (auf Letzteres

gehen wir in Abschnitt 4.4 ein). Dazu muss zunächst ein Dockerfile erstellt

werden. Als Basis verwenden wir ein offizielles Python-Image (Version

3.13.1). Damit steht direkt eine stabile Python-Laufzeitumgebung zur Verfü-

gung:

FROM python:3.13.1

Arbeitsverzeichnis

innerhalb des

Docker-Images

erstellen

Erstellen Sie innerhalb des Docker-Images ein Arbeitsverzeichnis (/app/src)

und legen Sie es als Standardordner für alle weiteren Befehle fest:

WORKDIR /app/src

Stellen Sie explizit sicher, dass das benötigte Verzeichnis existiert:

RUN mkdir -p /app/src/

Alle relevanten

lokalen Dateien in

das Docker-Image

kopieren

Kopieren Sie nun alle relevanten lokalen Dateien in das Docker-Image

(siehe Listing 4.14):

▪ predictor.py enthält den Programmcode zum Training oder zur Analyse

des Isolation-Forest-Modells.

▪ synthetic_financial_transactions.csv ist der Datensatz für die lokale

Entwicklung und Tests.

▪ requirements.txt ist die Liste aller benötigten Python-Pakete und Abhän-

gigkeiten.

COPY predictor.py ./
COPY synthetic_financial_transactions.csv ./
COPY requirements.txt ./

Listing 4.14 Dateien in das Docker-Image kopieren

4 Anomalieerkennung in Finanztransaktionen

132

Notwendige

Python-

Bibliotheken

installieren

Installieren Sie automatisch alle notwendigen Python-Bibliotheken, die in

requirements.txt angegeben sind, sodass das Modell problemlos ausge-

führt werden kann:

RUN pip3 install -r requirements.txt

Berechtigungen

setzen

Setzen Sie die Berechtigungen für den Ordner /app so, dass jeder Nutzer im

Container Zugriff erhält (zugegeben, ein sehr offener Ansatz für lokale Ent-

wicklungszwecke). Dies ist nützlich, um Dateizugriffe und Entwicklungs-

tests einfacher durchzuführen:

RUN chgrp -R 65534 /app && \
 chmod -R 777 /app

Inhalt des

Dockerfiles

Dieses Dockerfile kann nun genutzt werden, um entsprechend ein Docker-

Image aufzubauen und den zugehörigen Container ausführen, um das Trai-

ning des Modells zu starten. Äquivalent dazu kann auch beim Deployment

des fertigen Service (API) vorgegangen werden. Sie finden den Inhalt des

Dockerfiles in Listing 4.15.

from python:3.13.1

WORKDIR /app/src

Directory in Ihrem Docker-Image erstellen
RUN mkdir -p /app/src/
#
File aus Ihrem lokalen System zum Pfad im Docker-Image kopieren
COPY predictor.py ./
COPY synthetic_financial_transactions.csv ./
COPY requirements.txt ./
#
Abhängigkeiten innerhalb Ihres Docker-Image installieren
RUN pip3 install -r requirements.txt
#
Berechtigung für den Zugriff auf den Ordner /app aktivieren
RUN chgrp -R 65534 /app && \
 chmod -R 777 /app

Listing 4.15 Gesamter Inhalt des Dockerfiles

Docker-Image

aufbauen

Bauen Sie das Docker-Image auf (siehe Listing 4.16):

▪ Basisimage (FROM python:3.13.1): Analog zum ersten Dockerfile wird hier

ebenfalls ein Python-Standardimage in der Version 3.13.1 genutzt.

4.3 Technische Umsetzung

133

▪ Arbeitsverzeichnis definieren (WORKDIR /app/src): Erneut wird das Ver-

zeichnis /app/src festgelegt, das als zentrale Stelle für die Anwendung

dient.

▪ Verzeichnis anlegen (RUN mkdir -p /app/src/): So wird sichergestellt, dass

das Arbeitsverzeichnis existiert.

FROM python:3.13.1

WORKDIR /app/src

RUN mkdir -p /app/src/

COPY main.py ./
COPY isolation_forest_model.pkl ./
COPY label_encoders.pkl ./
COPY requirements.txt ./

RUN pip3 install -r requirements.txt

RUN chgrp -R nogroup /app && \
 chmod -R 777 /app

Listing 4.16 Docker-Image aufbauen

Dateien in das

Docker-Image

übertragen

Übertragen Sie die folgende Dateien in das Docker-Image (siehe Listing 4.17):

▪ main.py: Die FastAPI-basierte API zur Echtzeit-Anomalieerkennung.

▪ isolation_forest_model.pkl: Das bereits trainierte Modell.

▪ label_encoders.pkl: Die Encoder zur Verarbeitung neuer Transaktions-

daten.

▪ requirements.txt: Enthält alle notwendigen Abhängigkeiten (z. B.

FastAPI, sklearn, pandas), um die API produktiv laufen zu lassen.

COPY main.py ./
COPY isolation_forest_model.pkl ./
COPY label_encoders.pkl ./
COPY requirements.txt ./

Listing 4.17 Dateien für den produktiven Betrieb kopieren

Installieren Sie alle Python-Bibliotheken, die für die API erforderlich sind:

RUN pip3 install -r requirements.txt

4 Anomalieerkennung in Finanztransaktionen

134

Offene

Zugriffsrechte

setzen

Ähnlich wie beim ersten Dockerfile setzen Sie nun offene Zugriffsrechte, al-

lerdings mit der Benutzergruppe nogroup, die in vielen Linux-Distributio-

nen als Standardgruppe für nicht zugewiesene Nutzer gilt. Dies erleichtert

insbesondere die problemlose Ausführung in cloudbasierten oder con-

tainerisierten Umgebungen:

RUN chgrp -R nogroup /app && \
 chmod -R 777 /app

Inhalt des zweiten

Dockerfiles

Den Inhalt des zweiten Dockerfiles sehen Sie in Listing 4.18.

from python:3.13.1

WORKDIR /app/src

Directory in Ihrem Docker-Image erstellen
RUN mkdir -p /app/src/
#
File aus Ihrem lokalen System zum Pfad im Docker-Image kopieren
COPY main.py ./
COPY isolation_forest_model.pkl ./
COPY label_encoders.pkl ./
COPY requirements.txt ./
#
Abhängigkeiten innerhalb Ihres Docker-Image installieren
RUN pip3 install -r requirements.txt
#
Berechtigung für den Zugriff auf den Ordner /app aktivieren
RUN chgrp -R nogroup /app && \
 chmod -R 777 /app

Listing 4.18 Gesamter Inhalt des zweiten Dockerfiles

Beide Dockerfiles unterstützen also eine flexible, effiziente und skalierbare

Entwicklung sowie den nahtlosen Übergang von lokaler Entwicklung hin

zur cloudbasierten Bereitstellung der Lösung für die Anomalieerkennung:

▪ Dockerfile 1 (für die lokale Entwicklung)

Ideal für schnelles Entwickeln, Testen und Experimentieren mit Daten

und Modellvarianten.

▪ Dockerfile 2 (für die API/Produktion)

Geeignet für den stabilen, produktiven Einsatz einer REST-API zur auto-

matisierten Anomalieerkennung, etwa auf der SAP BTP oder lokal.

4.3 Technische Umsetzung

135

Docker-Registry

nutzen

Beide Dockerfiles lassen sich entweder lokal ausführen oder – was oftmals

der professionellere Ansatz ist – als Image in eine Docker-Registry hochla-

den. In vielen Unternehmen existiert bereits eine interne Docker-Registry;

alternativ kann auch eine öffentliche Registry wie beispielsweise Docker

Hub genutzt werden.

Liegt das Dockerfile im aktuellen Verzeichnis, lässt sich das Image mit fol-

gendem Befehl im Terminal erstellen:

docker build -t username/imagename:tag .

AnmeldenDabei müssen username, imagename und tag durch eigene Werte ersetzt wer-

den. Nach einer Registrierung auf hub.docker.com erfolgt die Anmeldung

über:

docker login

Docker-Image

hochladen

Anschließend kann das erstellte Image mit dem folgenden Befehl in die

Registry hochgeladen werden:

docker push username/imagename:tag

Sobald das Image erfolgreich gepusht wurde, steht es auch anderen Res-

sourcen zur Verfügung.

4.3.4 Automatisierte KI-Workflows mit ArgoFlows in

SAP AI Core erstellen

Nachdem die SecureBank AG den Entwicklungsprozess zunächst lokal ge-

startet hatte, ist nun ein entscheidender Meilenstein erreicht: Das Anoma-

lieerkennungsmodell auf Basis des Isolation Forests wurde erfolgreich ent-

wickelt und in eine lauffähige API überführt. Die Kernkomponenten der

Lösung liegen damit vor. An diesem Punkt im Projekt haben Sie also bereits

die lokale Entwicklung und Testphase abgeschlossen und verfügen über

eine funktionierende technische Grundlage.

Im nächsten Schritt geht es darum, diese Komponenten in den produktiven

Betrieb zu überführen. Das bedeutet, Sie stehen nun vor der Aufgabe, Ihr lo-

kal erstelltes Modell und die dazugehörige API in eine skalierbare, cloudba-

sierte Umgebung zu bringen. Dabei spielt der SAP AI Core als zentrale Run-

time-Plattform eine entscheidende Rolle. In diesem Abschnitt zeigen wir

Ihnen, wie Sie die zuvor entwickelten Komponenten auf die SAP Business

Technology Platform (SAP BTP) übertragen und dort betreiben können – da-

mit Ihre KI-Lösung zuverlässig, skalierbar und wartbar im Unternehmens-

kontext eingesetzt werden kann.

4 Anomalieerkennung in Finanztransaktionen

136

ArgoFlows In SAP AI Core spielen sogenannte ArgoFlows eine zentrale Rolle, wenn es

darum geht, komplexe KI-Workflows zuverlässig, wiederholbar und skalier-

bar zu automatisieren. ArgoFlows basieren auf der Open-Source-Technolo-

gie Argo Workflows und ermöglichen die präzise Steuerung sämtlicher

Schritte im Lebenszyklus von KI-Modellen – vom Training bis zur produkti-

ven Bereitstellung. Mithilfe von YAML-basierten Workflow-Templates lässt

sich definieren, wie beispielsweise ein Isolation-Forest-Modell automati-

siert trainiert und verwaltet werden kann. Diese Templates beschreiben de-

tailliert, welche Container ausgeführt werden, wie Daten verarbeitet werden

und wie SAP AI Core nahtlos mit Docker-Images interagiert. Dadurch wer-

den manuelle Eingriffe auf ein Minimum reduziert und höchste Effizienz

bei der Entwicklung und beim Betrieb von KI-Lösungen sichergestellt. SAP

stellt dabei Workflow-Templates bereit, die nach den eigenen Anforderun-

gen angepasst werden können.

Training des

Isolation Forests

Hier ist ein Beispiel für das Training des Isolation Forests:

apiVersion: argoproj.io/v1alpha1
kind: WorkflowTemplate

apiVersion definiert hier die verwendete Version der Argo-Workflows-API,

die SAP AI Core zugrunde liegt. kind gibt den Typ des Templates an (Work-

flowTemplate), das in SAP AI Core verwendet wird, um wiederverwendbare

Workflow-Abläufe zu definieren.

Definieren Sie die Metadaten des Workflows (siehe Listing 4.19). Der Para-

meter name definiert einen eindeutigen Namen für den Workflow – in die-

sem Fall train-predictor. Dieser Name muss eindeutig sein, insbesondere

wenn mehrere Workflows parallel in SAP AI Core betrieben werden, da er

der zentrale Identifikator für die Ausführung und Verwaltung ist.

»annotations« Unter annotations werden zusätzliche beschreibende Informationen hin-

terlegt:

▪ scenarios.ai.sap.com/description bietet eine kurze Beschreibung des

Zwecks des Workflows.

▪ scenarios.ai.sap.com/name benennt das übergeordnete Szenario, dem

der Workflow zugeordnet ist.

▪ executables.ai.sap.com/description beschreibt die konkrete Aufgabe

des Workflows – in diesem Fall das Training eines Isolation-Forest-Mo-

dells.

▪ executables.ai.sap.com/name benennt den Anwendungsfall klar als »Fi-

nancial Transaction Anomaly«.

4.3 Technische Umsetzung

137

»labels«Die unter labels angegebenen Metadaten helfen dabei, Workflows in SAP AI

Core systematisch zu organisieren, zu versionieren und effizient zu verwal-

ten. Sie ermöglichen eine strukturierte Zuordnung und eine bessere Nach-

vollziehbarkeit in komplexeren Umgebungen mit vielen Szenarien.

metadata:
 name: train-predictor
 annotations:
 scenarios.ai.sap.com/description: "Tutorial to add custom code to
SAP AI Core"
 scenarios.ai.sap.com/name: "Code (AI Business Cases)"
 executables.ai.sap.com/description: "Trains Isolation Forest"
 executables.ai.sap.com/name: "Financial Transaction Anomaly
(Sklearn Example)"
 labels:
 scenarios.ai.sap.com/id: "train-predictor"
 ai.sap.com/version: "3.0"

Listing 4.19 Metadaten (Namen und Annotationen)

»imagePullSecrets«Legen Sie nun die Workflow-Spezifikationen fest (siehe Listing 4.20). Der Pa-

rameter imagePullSecrets referenziert ein sogenanntes Secret, das die Zu-

gangsdaten zu einer privaten Docker-Registry enthält. Dieses Secret wird

benötigt, damit SAP AI Core das angegebene Docker-Image aus einer ge-

schützten Registry abrufen kann. Ohne diese Angabe könnte das Image

nicht geladen werden, wenn es nicht öffentlich zugänglich ist.

»entrypoint«Der Eintrag entrypoint legt fest, welcher Teil des Workflows beim Start aus-

geführt werden soll. In diesem Fall ist mypipeline der Einstiegspunkt – also

die benannte Pipeline, mit der der Workflow beginnt. Diese Pipeline defi-

niert die konkreten Schritte, die im Rahmen der Ausführung nacheinander

abgearbeitet werden.

spec:
 imagePullSecrets:
 - name: ai-business-cases
 entrypoint: mypipeline

Listing 4.20 Workflow-Spezifikation (»spec«)

»mypipeline«Definieren Sie nun die Template- und Pipeline-Struktur (siehe Listing 4.21).

Der Abschnitt mypipeline beschreibt die eigentliche Pipeline, die den Ablauf

des Workflows definiert. In dieser Pipeline wird festgelegt, dass als Erstes ein

Schritt namens mypredictor ausgeführt wird. Dieser verweist auf das Tem-

4 Anomalieerkennung in Finanztransaktionen

138

plate mycodeblock1, das wiederum die Konfiguration des Containers und

dessen auszuführenden Befehl enthält.

»steps« Die Struktur basiert auf einem hierarchischen Aufbau: Innerhalb von steps

können eine oder mehrere Aktionen nacheinander oder parallel ausgeführt

werden. Diese Form der Definition erlaubt es, auch komplexere, mehrstu-

fige Workflows abzubilden, beispielsweise für das sequenzielle Training,

Testen und Bereitstellen von KI-Modellen oder für die parallele Ausführung

von Vorverarbeitungsschritten.

templates:
 - name: mypipeline
 steps:
 - - name: mypredictor
 template: mycodeblock1

Listing 4.21 Template- und Pipeline-Struktur

»mycodeblock1« Der Abschnitt mycodeblock1 beschreibt die konkrete Ausführungseinheit in-

nerhalb des Workflows. Hier wird der Container definiert, in dem das KI-Mo-

delltraining durchgeführt wird. Dieser Container bildet das Herzstück der

Pipeline, da er den eigentlichen Programmcode zur Anomalieerkennung

enthält.

»image« Mit dem Parameter image wird das Docker-Image angegeben, das in SAP AI

Core verwendet werden soll. In diesem Fall handelt es sich um das Image

docker.io/<user>/anomaly-predictor:03, das den vollständigen Python-

Code (predictor.py), alle notwendigen Abhängigkeiten sowie – je nach Auf-

bau – auch Trainingsdaten und gegebenenfalls ein initiales Modell bein-

haltet.

»command« und

»args«

Als Nächstes legen Sie die Container-Definition fest und führen das Modell

aus (siehe Listing 4.22). Die Einträge command und args geben an, was im Con-

tainer nach dem Start ausgeführt werden soll. Mit /bin/sh -c wird eine Shell

geöffnet, in der dann das Skript predictor.py ausgeführt wird. Dieses

Python-Skript enthält die Logik zum Training oder zur Anwendung des Iso-

lation-Forest-Modells und stellt sicher, dass der Anomalieerkennungspro-

zess vollständig automatisiert im Container abläuft.

 - name: mycodeblock1
 container:
 image: docker.io/<user>/anomaly-predictor:03
 command: ["/bin/sh", "-c"]
 args:
 - "python /app/src/predictor.py"

Listing 4.22 Container definieren und Modell ausführen

4.3 Technische Umsetzung

139

Das gesamte Skript

in der Übersicht

In Listing 4.23 sehen Sie das gesamte Skript mit allen besprochenen Elemen-

ten. Sie finden es ebenfalls im Download-Material dieses Buchs unter

www.sap-press.de/6149.

apiVersion: argoproj.io/v1alpha1
kind: WorkflowTemplate
metadata:
 name: train-predictor # executable id, must be unique across all
your workflows (YAML files), please modify this to any value (e.g.
code-pipeline-12345) if you are not the only user of your SAP AI Core
instance.
 annotations:
 scenarios.ai.sap.com/description: "Tutorial to add custom code to
SAP AI Core"
 scenarios.ai.sap.com/name: "Code (AI Business Cases)"
 executables.ai.sap.com/description: "Trains Isolation Forest"
 executables.ai.sap.com/name: "Financial Transaction Anomaly
(Sklearn Example)"
 labels:
 scenarios.ai.sap.com/id: "train-predictor"
 ai.sap.com/version: "3.0"
spec:
 imagePullSecrets:
 - name: ai-business-cases # your docker registry secret
 entrypoint: mypipeline
 templates:
 - name: mypipeline
 steps:
 - - name: mypredictor
 template: mycodeblock1

 - name: mycodeblock1
 container:
 image: docker.io/<user>/anomaly-predictor:03 # Your docker
image name
 command: ["/bin/sh", "-c"]
 args:
 - "python /app/src/predictor.py"

Listing 4.23 Gesamtes Workflow-File (»train-predictor.yaml«)

Diese YAML-Datei bildet eine vollständige Workflow-Vorlage für SAP AI

Core ab. Sie automatisiert das Ausführen eines KI-Modells im Kontext von

Finanztransaktionsanomalien, das einen Isolation Forest nutzt, und stellt

4 Anomalieerkennung in Finanztransaktionen

140

sicher, dass das Training bzw. die Ausführung sauber und reproduzierbar

über Docker-Container abläuft.

Damit kann ein lokal entwickeltes KI-Modell auf einfache Weise professio-

nell und skalierbar in der SAP-AI-Core-Umgebung betrieben werden.

4.3.5 KI-Services mit KServe und SAP AI Core produktiv bereitstellen

KServe Nachdem in Abschnitt 4.3.4 gezeigt wurde, wie das KI-Modell mithilfe von

ArgoFlows erfolgreich trainiert werden kann, rückt die nächste Herausfor-

derung in den Fokus: die produktive Bereitstellung des Modells als skalier-

barer Service. SAP AI Core setzt hier auf den KServe-Standard und soge-

nannte Serving-Templates, um den produktiven Einsatz von KI-Modellen in

der Cloud zu automatisieren. KServe ist ein Open-Source-Framework, das

speziell für das Bereitstellen und Skalieren von Machine-Learning-Model-

len in Kubernetes-Umgebungen entwickelt wurde.

Die YAML-basierte Definition ermöglicht es, Modell-Container mit wenigen

Zeilen Konfiguration als performante und skalierbare REST-API bereitzu-

stellen – etwa auf Basis von FastAPI und Gunicorn. Dank ausgefeilter Au-

toscaling-Mechanismen und der tiefen Integration in SAP AI Core lassen

sich so auch anspruchsvolle Use Cases wie die Anomalieerkennung im Fi-

nanzbereich einfach, zuverlässig und zukunftssicher produktiv machen.

»apiVersion« Der Eintrag apiVersion legt die verwendete Version der SAP-AI-Core-API

fest: In diesem Fall v1alpha1. Diese Versionierung stellt sicher, dass die

YAML-Struktur und die enthaltenen Funktionen mit dem jeweiligen Stand

der SAP-AI-Core-Plattform kompatibel sind. Gleichzeitig kann so sicherge-

stellt werden, dass Lösungen, die stetig weiterentwickelt werden, auch

nachvollziehbar versioniert werden können.

»kind« Der Parameter kind definiert den Typ der Ressource. Mit ServingTemplate

wird angegeben, dass es sich um eine Vorlage zur Bereitstellung eines Mo-

dells handelt. Solche Templates ermöglichen es, ein trainiertes KI-Modell als

dauerhaft erreichbaren Service bereitzustellen – beispielsweise in Form ei-

ner REST-API – und es so produktiv im Unternehmen zu nutzen:

apiVersion: ai.sap.com/v1alpha1
kind: ServingTemplate

»name« Als Nächstes definieren Sie die Metadaten des Modells (siehe Listing 4.24).

Der Parameter name dient zur eindeutigen Kennzeichnung des Serving-

Templates – in diesem Fall unter dem Namen anomaly-predictor-server.

Dieser Name identifiziert den Bereitstellungsprozess des Modells eindeutig

4.3 Technische Umsetzung

141

innerhalb von SAP AI Core und sollte daher konsistent und sprechend ge-

wählt werden.

»annotations«Die annotations enthalten zusätzliche beschreibende Informationen zum

Szenario. Sie helfen dabei, den Zweck und Kontext der Bereitstellung

schnell zu erfassen – hier geht es um die Bereitstellung eines Anomalieer-

kennungsmodells auf Basis von FastAPI und Isolation Forest. Diese Infor-

mationen werden später in der Benutzeroberfläche von SAP AI Core an-

gezeigt und unterstützen die Dokumentation und Verständlichkeit des

Modells.

»labels«Die labels ermöglichen eine strukturierte Kategorisierung, Filterung und

Versionierung innerhalb der SAP-AI-Core-Plattform. Sie erleichtern insbe-

sondere in umfangreicheren Projekten mit mehreren Modellen und Versi-

onen die Übersicht und Verwaltung.

metadata:
 name: anomaly-predictor-server
 annotations:
 scenarios.ai.sap.com/description: "Anomaly detection with
FastAPI"
 scenarios.ai.sap.com/name: "Anomaly FastAPI"
 executables.ai.sap.com/description: "FastAPI Isolation Forest"
 executables.ai.sap.com/name: "server"
 labels:
 scenarios.ai.sap.com/id: "anomaly-predictor-server"
 ai.sap.com/version: "3.0"

Listing 4.24 Metadaten (Name und Annotationen)

»apiVersion«Spezifizieren Sie nun das Serving-Template (siehe Listing 4.25). Die Angabe

der KServe-API-Version (apiVersion: serving.kserve.io/v1beta1) zeigt, dass

dieses Serving-Template auf dem KServe-Standard basiert. SAP AI Core ver-

wendet KServe als technische Grundlage, um KI-Modelle effizient, skalier-

bar und standardisiert bereitzustellen. Dadurch lassen sich Modelle als Ser-

vices betreiben, die bei Bedarf automatisch hoch- oder herunterskaliert

werden können – je nachdem, wie viele Anfragen verarbeitet werden müs-

sen. Die Nutzung von KServe ermöglicht damit eine moderne, cloud-native

Infrastruktur für produktionsreife KI-Anwendungen.

spec:
 template:
 apiVersion: "serving.kserve.io/v1beta1"

Listing 4.25 Spezifikation (»spec«) des Serving-Templates

4 Anomalieerkennung in Finanztransaktionen

142

Autoscaling

konfigurieren

Anschließend konfigurieren Sie das Autoscaling und die Ressourcenpla-

nung (siehe Listing 4.26). Die Autoscaling-Konfiguration legt fest, wie SAP AI

Core auf Basis der Nutzungslast automatisch die Anzahl der laufenden In-

stanzen (Pods) skaliert:

▪ metric: concurrency bedeutet, dass die Skalierung sich an der Anzahl

gleichzeitiger Anfragen orientiert. Wenn mehrere Anfragen parallel ver-

arbeitet werden müssen, kann das System zusätzliche Instanzen starten.

▪ target: 1 definiert, dass ein Pod im Durchschnitt eine Anfrage gleichzei-

tig bedienen soll. Wird dieser Schwellenwert überschritten, wird automa-

tisch ein weiterer Pod gestartet – so wird eine gleichbleibende Antwort-

zeit sichergestellt.

▪ targetBurstCapacity: 0 deaktiviert die sogenannte Burst-Kapazität, d. h.,

es wird keine zusätzliche Reservekapazität für plötzliche Lastspitzen be-

reitgehalten. Die Skalierung erfolgt kontrolliert und verzichtet auf spon-

tane Hochskalierung über die definierte Maximalanzahl hinaus.

»resourcePlan« Die Angabe resourcePlan: starter legt fest, welche Ressourcenklasse in SAP

AI Core verwendet wird – in diesem Fall das sogenannte Starterpaket, das ty-

pischerweise eine begrenzte Menge an CPU und Arbeitsspeicher bereit-

stellt. Dies ist ideal für Entwicklung, Tests oder kleinere produktive Modelle

mit moderatem Ressourcenbedarf.

 metadata:
 annotations: |
 autoscaling.knative.dev/metric: concurrency
 autoscaling.knative.dev/target: 1
 autoscaling.knative.dev/targetBurstCapacity: 0
 labels: |
 ai.sap.com/resourcePlan: starter

Listing 4.26 Autoscaling und Ressourcenplanung

»imagePullSecrets« Definieren Sie nun den Container, um das Modell bereitzustellen (siehe Lis-

ting 4.27). Der Eintrag imagePullSecrets ermöglicht den Zugriff auf private

oder geschützte Docker-Registries. Über das angegebene Secret kann SAP AI

Core das benötigte Docker-Image sicher abrufen, auch wenn es nicht öffent-

lich zugänglich ist.

»minReplicas« und

»maxReplicas«

Mit den Parametern minReplicas und maxReplicas wird definiert, wie viele

Instanzen (Pods) des bereitgestellten KI-Modell-Service mindestens und

maximal gleichzeitig laufen dürfen. In diesem Fall bedeutet minReplicas: 1,

dass der Service dauerhaft verfügbar bleibt, während maxReplicas: 3 eine au-

4.3 Technische Umsetzung

143

tomatische Skalierung bis zu drei parallelen Instanzen erlaubt – abhängig

von der aktuellen Auslastung.

»containers«Im Abschnitt containers wird der technische Aufbau des Deployments be-

schrieben:

▪ name identifiziert den Container eindeutig innerhalb des Serving-Pro-

zesses.

▪ image gibt an, welches Docker-Image verwendet wird. Dieses Image ent-

hält das trainierte Modell, die API-Logik (z. B. mit FastAPI) und alle Ab-

hängigkeiten.

▪ ports definiert, über welchen Port (hier: 9001) der Service erreichbar ge-

macht wird. Über diesen Port nimmt der Container API-Anfragen ent-

gegen.

»command« und

»args«

Die Felder command und args legen fest, wie der Container beim Start den

Webservice ausführt. Hierbei wird mit /bin/sh -c zunächst eine Shell geöff-

net, in der dann der Befehl

gunicorn --chdir /app/src main:app -k uvicorn.workers.UvicornWorker
-b 0.0.0.0:9001

»gunicorn« und

»uvicorn«

ausgeführt wird. Dabei übernimmt gunicorn die Rolle eines robusten und

skalierbaren Server-Hosts, der auch im produktiven Umfeld zuverlässig

läuft. uvicorn fungiert als performanter ASGI-kompatibler Server, der spezi-

ell für moderne Python-Webframeworks wie FastAPI entwickelt wurde. Ge-

meinsam sorgen sie dafür, dass die FastAPI-Anwendung performant, stabil

und produktionsfähig betrieben werden kann.

 spec: |
 predictor:
 imagePullSecrets:
 - name: ai-business-cases
 minReplicas: 1
 maxReplicas: 3
 containers:
 - name: kserve-container
 image: "docker.io/<user>/anomaly-predictor-server:02"
 ports:
 - containerPort: 9001
 protocol: TCP
 command: ["/bin/sh", "-c"]
 args:

4 Anomalieerkennung in Finanztransaktionen

144

 - >
 set -e && echo "Starting" && gunicorn --chdir /app/src
main:app -k uvicorn.workers.UvicornWorker -b 0.0.0.0:9001

Listing 4.27 Container definieren zur Modellbereitstellung

Das gesamte Skript

in der Übersicht

In Listing 4.28 sehen Sie das gesamte Skript mit allen besprochenen Elemen-

ten. Sie finden es ebenfalls im Download-Material dieses Buchs unter

www.sap-press.de/6149.

apiVersion: ai.sap.com/v1alpha1
kind: ServingTemplate
metadata:
 name: anomaly-predictor-server
 annotations:
 scenarios.ai.sap.com/description: "Anomaly detection with
 FastAPI"
 scenarios.ai.sap.com/name: "Anomaly FastAPI"
 executables.ai.sap.com/description: "FastAPI Isolation Forest"
 executables.ai.sap.com/name: "server"
 labels:
 scenarios.ai.sap.com/id: "anomaly-predictor-server"
 ai.sap.com/version: "3.0"
spec:
 template:
 apiVersion: "serving.kserve.io/v1beta1"
 metadata:
 annotations: |
 autoscaling.knative.dev/metric: concurrency
 autoscaling.knative.dev/target: 1
 autoscaling.knative.dev/targetBurstCapacity: 0
 labels: |
 ai.sap.com/resourcePlan: starter
 spec: |
 predictor:
 imagePullSecrets:
 - name: ai-business-cases
 minReplicas: 1
 maxReplicas: 3
 containers:
 - name: kserve-container
 image: "docker.io/<user>/anomaly-predictor-server:02"
 ports:
 - containerPort: 9001

4.4 Die KI-Lösung auf der SAP BTP bereitstellen

145

 protocol: TCP
 command: ["/bin/sh", "-c"]
 args:
 - >
 set -e && echo "Starting" && gunicorn --chdir /app/src
main:app -k uvicorn.workers.UvicornWorker -b 0.0.0.0:9001

Listing 4.28 Gesamtes Workflow-File für das Ausführen des API-Service

(»run_predictor.yaml«)

Dieses Serving-Template erlaubt es, einen KI-basierten Anomalieerken-

nungsservice, der einen Isolation Forest nutzt, effizient, skalierbar und pro-

duktiv in SAP AI Core bereitzustellen. Die Konfiguration nutzt Indus-

triestandards (KServe, Knative Autoscaling, FastAPI, Gunicorn/Uvicorn),

um optimale Performance, automatisierte Skalierung und die zuverlässige

Bereitstellung der KI-Lösung sicherzustellen.

Durch diese YAML-Datei wird die lokale KI-Lösung nahtlos in der Cloud be-

trieben und in die bestehenden Unternehmensprozesse integriert.

4.4 Die KI-Lösung auf der SAP BTP bereitstellen

Nach der lokalen Entwicklung des KI-Modells und der technischen Vorbe-

reitung aller relevanten Komponenten – wie Python-Skripte, Docker-Con-

tainer, YAML-Workflows und Serving-Konfigurationen – folgt nun der

entscheidende Schritt: die Überführung in eine produktive Umgebung in-

nerhalb der SAP Business Technology Platform (SAP BTP).

Inhalt dieses

Abschnitts

In diesem Abschnitt zeigen wir Ihnen, wie Sie Ihre KI-Anwendung auf der

SAP BTP operationalisieren. Sie lernen, wie Sie:

▪ Ihre Code-Artefakte und Container registrieren,

▪ Workflows in SAP AI Core deployen,

▪ Servings für Vorhersagen einrichten

▪ und Ihre Anomalieerkennung als produktionsfähigen Service

bereitstellen.

Dabei liegt der Fokus bewusst nicht nur auf der technischen Umsetzung,

sondern auch auf den administrativen und operativen Schritten im SAP

BTP Cockpit – von der Projektstruktur bis zur Anbindung an das SAP AI

Launchpad. Mit dieser Anleitung machen Sie aus einem lokal entwickelten

KI-Prototyp eine skalierbare, wartbare und integrierbare Lösung im SAP-

Ökosystem.

4 Anomalieerkennung in Finanztransaktionen

146

4.4.1 Administrative Grundlagen in SAP AI Core

Service Key Bevor ein lokal entwickeltes KI-Modell auf SAP AI Core deployt werden

kann, muss ein sogenannter Service Key erstellt werden. Dieser Schlüssel

enthält alle notwendigen Verbindungsinformationen (z. B. API-URL, Token-

Endpunkte, Zugriffstoken), die benötigt werden, um per Skript, CLI oder

Workflow-Engine sicher auf den SAP AI Core zuzugreifen.

Service Key erstellen Im Fall der SecureBank AG gehen wir davon aus, dass der SAP AI Core Service

bereits im entsprechenden Space innerhalb der BTP konfiguriert und erfolg-

reich aktiviert wurde. Die Instanz ist unter dem Namen aicore sichtbar und

hat den Status Created. Ein Klick auf Create im Bereich Service Keys erzeugt

einen neuen Schlüssel, der anschließend exportiert oder direkt für lokale

Workflows genutzt werden kann (siehe Abbildung 4.4).

Abbildung 4.4 Service Key erstellen

Service Key im SAP

AI Launchpad

einbinden

Nachdem Sie den Service Key (Serviceschlüssel) für den SAP AI Core erstellt

haben, muss dieser im SAP AI Launchpad eingebunden werden, um den Zu-

griff auf die API und die bereitgestellten Workflows zu ermöglichen. Hierzu

legen Sie eine neue AI-API-Verbindung an.

Benötigte Angaben In der Maske AI-API-Verbindung anlegen benötigen Sie die folgenden Anga-

ben (siehe Abbildung 4.5):

▪ ein eindeutiger Verbindungsname (z. B. »ai-business-cases-conn«)

▪ der zuvor exportierte Serviceschlüssel (z. B. als Textdatei)

▪ die Verbindungsart (in der Regel Geheimer Schlüssel)

▪ der automatisch extrahierte Wert für die AI-API-URL – also der Endpunkt

zur Kommunikation mit dem AI Core

4.4 Die KI-Lösung auf der SAP BTP bereitstellen

147

▪ der automatisch extrahierte Wert für die XSUAA-URL, Client-ID und den

geheimen Client-Schlüssel, die aus dem Serviceschlüssel stammen

AI-API-Verbindung

anlegen

Nach dem Klick auf Anlegen steht die Verbindung im SAP AI Launchpad zur

Verfügung und kann für Trainings, Servings und Deployments verwendet

werden.

Abbildung 4.5 Neue AI-API-Verbindung erstellen

Im nächsten Schritt verknüpfen Sie Ihr Git-Repository mit dem SAP AI

Launchpad. In diesem Repository befinden sich die zuvor bereits entwickel-

ten Workflow-Templates, Serving-Definitionen und Konfigurationsdateien.

Durch diese Verbindung werden die Inhalte des Repositorys automatisch in

SAP AI Core übernommen und stehen dort zur weiteren Verwendung (z. B.

für Trainings oder Deployment-Prozesse) zur Verfügung.

4 Anomalieerkennung in Finanztransaktionen

148

Repository

hinzufügen

Fügen Sie dazu im Bereich SAP-AI-Core-Administration • Git-Repositorys ein

neues Repository hinzu oder bearbeiten Sie ein bestehendes. Die folgenden

Angaben sind dabei erforderlich (siehe Abbildung 4.6):

▪ die vollständige URL des Repositorys (z. B. GitHub)

▪ ein frei wählbarer Name zur Identifikation im SAP AI Launchpad

▪ der persönliche (GitHub-)Benutzername

▪ ein gültiges Zugriffs-Token, um SAP AI Core den sicheren Zugriff auf die

Repository-Inhalte zu ermöglichen

Sobald der Onboarding-Prozess erfolgreich abgeschlossen ist (erkennbar

am Status COMPLETED), stehen die Inhalte des Repositorys in SAP AI Core

zur Verfügung – etwa zur Ausführung von Trainingsworkflows oder zum

Anlegen von Servings.

Abbildung 4.6 Git-Repository im SAP AI Launchpad anbinden

Neben dem Zugriff auf das Git-Repository muss SAP AI Core auch auf die

Docker-Images zugreifen können, die Ihre trainierten Modelle oder Serv-

4.4 Die KI-Lösung auf der SAP BTP bereitstellen

149

ing-Anwendungen enthalten. Dazu ist es notwendig, dass Sie Ihre Docker-

Registry mit SAP BTP verbinden – etwa Docker Hub oder eine private Con-

tainer-Registry.

Geheimen Docker-

Registry-Schlüssel

hinterlegen

Dafür hinterlegen Sie einen sogenannten geheimen Docker-Registry-Schlüs-

sel (Docker Secret) im Bereich SAP-AI-Core-Administration • Geheime

Docker-Registry-Schlüssel (siehe Abbildung 4.7).

Abbildung 4.7 Geheimen Docker-Registry-Schlüssel in SAP AI Core hinterlegen

ZugangsdatenSie benötigen dafür ein JSON-Format mit Zugangsdaten (siehe Listing 4.29).

json
{
 ".dockerconfigjson": "{\"auths\": {\"<DOCKER_REGISTRY_URL>\": {\
"username\": \"<DOCKER_USERNAME>\", \"password\": \"<DOCKER_ACCESS_
TOKEN>\"}}}"
}

Listing 4.29 Aufbau des JSON für den geheimen Docker-Registry-Schlüssel

Passwort generierenDas Passwort ist in diesem Fall ein sogenannter Personal Access Token, den

Sie zuvor direkt in der Docker-Registry (z. B. hub.docker.com) generieren

müssen. Benutzername und Token ermöglichen SAP AI Core das automa-

tisierte Pullen (also das Herunterladen) der Images bei Workflows und De-

ployments.

4 Anomalieerkennung in Finanztransaktionen

150

4.4.2 Anwendung registrieren

Sobald das Git-Repository und die Docker-Registry erfolgreich mit der SAP

BTP verbunden wurden, synchronisiert SAP AI Core automatisch alle ver-

fügbaren Inhalte aus dem Repository. Im nächsten Schritt müssen Sie nun

eine sogenannte Anwendung registrieren. Diese verknüpft einen bestimm-

ten Pfad im Repository mit der SAP-AI-Core-Umgebung.

Neue Anwendung

erstellen

Dazu navigieren Sie zu SAP-AI-Core-Administration • Anwendungen und er-

stellen eine neue Anwendung. Für die Konfiguration benötigen Sie die fol-

genden Angaben (siehe Abbildung 4.8):

▪ einen eindeutigen Anwendungsnamen

▪ das gewünschte Repository (z. B. »ai-business-cases-demo«)

▪ den anzugebenden relevanten Pfad im Repository (z. B. »run«)

▪ eine festzulegende Revision (z. B. »HEAD« für den neuesten Stand im

Haupt-Branch)

Abbildung 4.8 Anwendung in SAP AI Core registrieren

Diese Anwendung dient anschließend als Grundlage für Trainings-, De-

ployment- oder Serving-Prozesse – je nachdem, welche Workflows und

Codedateien sich im angegebenen Pfad befinden.

4.4 Die KI-Lösung auf der SAP BTP bereitstellen

151

4.4.3 Szenario konfigurieren

Definition: SzenarioNach erfolgreicher Konfiguration und Synchronisation der Anwendung

durch den SAP AI Core stehen die Inhalte nun für operative Prozesse bereit.

Unter ML Operations • Szenarios sind alle registrierten Anwendungen in

Form sogenannter Szenarien sichtbar (siehe Abbildung 4.9). Ein Szenario re-

präsentiert dabei eine Einheit, mit der ein konkreter Trainings-, Serving-

oder Ausführungsprozess initiiert werden kann.

Abbildung 4.9 Übersicht der verfügbaren Szenarien im SAP AI Launchpad

Details der

Szenarien

Die Szenarien sind jeweils mit einem Namen, einer Beschreibung, dem Er-

stellungsdatum sowie den verfügbaren Versionen versehen. Sie bieten den

zentralen Einstiegspunkt für den weiteren Betrieb der KI-Anwendung im

SAP AI Launchpad.

Konfiguration

erstellen

Um ein registriertes Szenario tatsächlich ausführen zu können – sei es ein

Training, ein Inferenzserver oder eine Vorhersage –, müssen Sie im nächs-

ten Schritt eine sogenannte Konfiguration erstellen. Die Konfiguration ent-

hält alle notwendigen Angaben darüber, welche Einheit (z. B. ein Skript oder

Container) in welchem Szenario ausgeführt werden soll.

Dieser Schritt erfolgt über den Menüpunkt ML Operations • Konfiguratio-

nen (siehe Abbildung 4.10). Mit einem Klick auf Anlegen öffnet sich ein Dia-

log, in dem Sie eine bestehende Einheit (aus dem Szenario) auswählen, be-

nennen und bei Bedarf mit weiteren Parametern versehen können.

Abbildung 4.10 Übersicht über Konfigurationen im SAP AI Launchpad

4 Anomalieerkennung in Finanztransaktionen

152

Die Konfiguration ist damit der konkrete Startpunkt, um z. B. das Training

des Anomalieerkennungsmodells oder den Betrieb eines FastAPI-basierten

Inferenzservers auszulösen.

Konfigurations-

Wizard

Nachdem Sie den Konfigurationsprozess gestartet haben, führt Sie ein

Wizard Schritt für Schritt durch die benötigten Einstellungen (siehe Abbil-

dung 4.11). Im ersten Schritt wird die neue Konfiguration benannt und das

gewünschte Szenario, die entsprechende Version sowie die Ausführbare

Einheit (z. B. ein Trainingsskript oder Vorhersagemodell) festgelegt.

Abbildung 4.11 Konfigurations-Wizard

Angaben

überprüfen

In den weiteren Schritten des Wizards können Sie bei Bedarf zusätzliche Ein-

gabeparameter (z. B. Schwellenwerte oder Flags) und Eingabeartefakte (z. B.

Dateien, Modelle oder Datensätze) definieren. Am Ende erfolgt eine Über-

prüfung aller Angaben, bevor Sie die Konfiguration erstellen und aktivie-

ren.

Damit ist der Weg zur automatisierten Ausführung Ihrer individuellen KI-

Pipeline in SAP AI Core geebnet.

4.4.4 Workflow ausführen

Ausführungs-

Wizard

Nachdem Sie die Konfiguration erfolgreich abgeschlossen haben, kann die

eigentliche Ausführung des Szenarios gestartet werden – z. B. für das initiale

Training eines KI-Modells. Dies erfolgt im Bereich ML Operations • Ausfüh-

rungen. Durch einen Klick auf Anlegen startet der Ausführungs-Wizard, in

dem Sie das entsprechende Szenario auswählen und die gewünschte aus-

führbare Einheit (z. B. ein Trainingsskript) festlegen (siehe Abbildung 4.12).

4.4 Die KI-Lösung auf der SAP BTP bereitstellen

153

Abbildung 4.12 Ausführungs-Wizard

Optional:

Ausführung planen

Optional können Sie die Ausführung auch planen – etwa zur regelmäßigen

Aktualisierung des Modells auf Basis neuer Daten. Dies eröffnet die Mög-

lichkeit, Machine-Learning-Workflows vollständig automatisiert in der SAP

BTP zu betreiben.

Status überwachenNach dem Start einer Ausführung lässt sich der Fortschritt direkt im SAP AI

Launchpad nachvollziehen. Unter ML Operations • Ausführungen kann jede

gestartete Instanz anhand ihrer ID und ihres aktuellen Status überwacht

werden – z. B. ob sie gerade läuft, abgeschlossen oder fehlgeschlagen ist.

Neben dem visuellen Prozessdiagramm sind dort auch Start-/Endzeiten,

Dauer, Logs und etwaige Ergebnisse abrufbar (siehe Abbildung 4.13).

Abbildung 4.13 Prozessübersicht: Ablauf der Ausführung

4 Anomalieerkennung in Finanztransaktionen

154

Das erleichtert sowohl die Fehlersuche als auch die Nachverfolgung wieder-

kehrender Trainings- oder Inferenzprozesse.

4.4.5 Modell implementieren

Handelt es sich nicht um eine einmalige Ausführung wie beim Modelltrai-

ning, sondern um ein dauerhaft erreichbares Modell (z. B. via REST-API), er-

folgt die Bereitstellung über ML Operations • Implementierungen.

Neues Deployment

erstellen

Über Anlegen können Sie ein neues Deployment erstellen. Dabei wird das

gewünschte, zuvor synchronisierte Serving-Template ausgewählt – in un-

serem Fall das Modell zur Anomalieerkennung mit FastAPI, »Anomaly

FastAPI« (siehe Abbildung 4.14). Es wird anschließend dauerhaft bereitge-

stellt und ist für Anfragen von außen erreichbar.

Abbildung 4.14 Synchronisiertes Serving-Template auswählen

Bereitstellungs-

einheit auswählen

Nachdem das Szenario gewählt wurde, erfolgt im zweiten Schritt die Aus-

wahl der ausführbaren Bereitstellungseinheit. Diese Einheit definiert den

konkreten Bereitstellungsbaustein – also zum Beispiel eine API, die später

Anfragen entgegennimmt und Vorhersagen trifft. In unserem Fall wird die

Einheit server verwendet, die unsere FastAPI-Anwendung mit unserem Iso-

lation-Forest-Modell bereitstellt (siehe Abbildung 4.15).

Konfiguration

auswählen

Im dritten Schritt wählen Sie eine bestehende Konfiguration aus, die zur ge-

wählten ausführbaren Bereitstellungseinheit gehört. Diese Konfiguration

legt fest, wie das Modell beim Deployment verwendet wird – inklusive mög-

licher Parameter oder Eingabeartefakte. In unserem Fall ist die Konfigura-

tion »anomaly-inference-server« bereits vorhanden und ausgewählt (siehe

Abbildung 4.16). Alternativ können Sie an dieser Stelle auch eine neue Kon-

figuration erstellen.

4.4 Die KI-Lösung auf der SAP BTP bereitstellen

155

Abbildung 4.15 Ausführbare Einheit auswählen

Abbildung 4.16 Eine bestehende Konfiguration auswählen

Dauer wählenIn nächsten Schritt des Deployment-Wizards kann die gewünschte Dauer

der Bereitstellung gewählt werden. Dies ermöglicht entweder eine benut-

zerdefinierte Laufzeit (z. B. für Tests oder geplante Offline-Stellungen) oder

eine Nutzung der Standarddauer, die systemseitig vordefiniert ist (siehe Ab-

bildung 4.17). So wird gesteuert, wie lange das Modell aktiv im System ver-

fügbar ist.

Einstellungen

überprüfen

Im letzten Schritt des Wizards werden alle zuvor getroffenen Einstellungen

zusammengefasst dargestellt: Szenario, Ausführbare Einheit, Konfiguration

sowie die gewählte Dauer (siehe Abbildung 4.18). So lässt sich vor dem fina-

len Schritt noch einmal alles überprüfen und bei Bedarf korrigieren. Mit ei-

nem Klick auf Anlegen wird das Deployment in der SAP BTP angestoßen

und automatisch ausgeführt.

4 Anomalieerkennung in Finanztransaktionen

156

Abbildung 4.17 Dauer des Deployments festlegen

Abbildung 4.18 Deployment-Einstellungen überprüfen

Status prüfen Nach der Ausführung kann der aktuelle Status des Deployments in der De-

tailansicht überprüft werden (siehe Abbildung 4.19). Es wird angezeigt, ob

das Deployment bereits aktiv ist oder sich noch in Vorbereitung befindet.

Sobald es vollständig aktiv ist, wird auch die zugehörige URL zur API-Nut-

zung angezeigt.

Sobald das Modell erfolgreich deployt wurde, wechselt der Status zu WIRD

AUSGEFÜHRT (siehe Abbildung 4.20). In diesem Zustand ist das Modell aktiv

und kann über die angegebene URL angesprochen werden. Damit ist der Ser-

vice produktiv nutzbar – beispielsweise für Inferenzanfragen aus externen

Anwendungen.

4.4 Die KI-Lösung auf der SAP BTP bereitstellen

157

Abbildung 4.19 Status des Deployments

Abbildung 4.20 Aktiver Deployment-Status mit verfügbarer URL

4 Anomalieerkennung in Finanztransaktionen

158

4.4.6 Das Modell über eine API in neue oder bestehende

Anwendungen integrieren

Nachdem das Modell erfolgreich deployt wurde und der Status auf WIRD

AUSGEFÜHRT steht, kann der bereitgestellte Service nun programmgesteu-

ert über eine REST-API angesprochen werden. Dies ermöglicht es, externe

Anwendungen oder Testszenarien direkt mit dem Anomalieerkennungs-

modell zu verbinden.

Voraussetzungen Um die API nutzen zu können, müssen folgende Voraussetzungen erfüllt

sein:

1. Zugriffstoken (Access Token)

Für den Aufruf der geschützten API-Endpunkte ist ein gültiger Bearer

Token erforderlich. Dieser kann mithilfe des zu Beginn erstellten Service

Keys generiert werden – typischerweise über ein OAuth2-Flow mit Client

Credentials.

2. API-Endpunkt (URL)

Die vollständige URL zum Deployment wird in der Übersicht der SAP-AI-

Launchpad-Deployment-Details angezeigt. Sie setzt sich aus der Basis-

URL und dem spezifischen Pfad zusammen.

https://api.ai.prod.eu-central-1.aws.ml.hana.ondemand.com/v2/
inference/deployments/<deployment-id>/v2/predict

In unserem Fall lautet der Endpunkt:

https://api.ai.prod.eu-central-1.aws.ml.hana.ondemand.com/v2/
inference/deployments/d0fdf419855deb40/v2/predict

Beispiel-Request Für die Kommunikation mit dem Service wird ein POST-Request an die

oben genannte URL gesendet. Im Header wird der Access Token im Format

Authorization: Bearer <token> übermittelt (siehe Listing 4.30).

POST /v2/inference/deployments/d0fdf419855deb40/v2/predict HTTP/1.1
Host: api.ai.prod.eu-central-1.aws.ml.hana.ondemand.com
Authorization: Bearer <ACCESS_TOKEN>
Content-Type: application/json

Listing 4.30 Request-Header

Body Der Body enthält die Transaktionsdaten, die auf Anomalien überprüft wer-

den sollen (siehe Listing 4.31).

4.4 Die KI-Lösung auf der SAP BTP bereitstellen

159

{
 "data": [
 {
 "amount": 35.75,
 "hour": 15,
 "weekday": "Tue",
 "merchant_category": "Groceries"
 },
 {
 "amount": 10000.72,
 "hour": 10,
 "weekday": "Wed",
 "merchant_category": "Groceries"
 }
]
}

Listing 4.31 Request-Body (Beispiel)

API-AntwortDie Antwort enthält für jede übergebene Transaktion eine Vorhersage

(siehe Listing 4.32). Dabei signalisiert das Feld anomaly_detected, ob es sich

bei der jeweiligen Transaktion um eine Anomalie handelt:

▪ 0: Keine Anomalie erkannt

▪ 1: Anomalie erkannt

{
 "predictions": [
 {
 "input": {
 "amount": 35.75,
 "hour": 15,
 "weekday": "Tue",
 "merchant_category": "Groceries"
 },
 "anomaly_detected": 0
 },
 {
 "input": {
 "amount": 10000.72,
 "hour": 10,
 "weekday": "Wed",
 "merchant_category": "Groceries"
 },

4 Anomalieerkennung in Finanztransaktionen

160

 "anomaly_detected": 1
 }
]
}

Listing 4.32 Beispielantwort

In diesem Beispiel wurde die erste Transaktion als normal erkannt, während

die zweite Transaktion aufgrund des ungewöhnlich hohen Betrags als Ano-

malie klassifiziert wurde.

Nahtlose

Integration möglich

Mit dem erfolgreich erstellten und getesteten Service steht nun ein voll

funktionsfähiger Anomalieerkennungsdienst zur Verfügung, der über eine

standardisierte REST-API angesprochen werden kann. Dadurch lässt sich

der Service nahtlos in bestehende Applikationen, Workflows oder Backend-

Systeme integrieren – sei es zur Überwachung von Transaktionen, zur Vor-

prüfung von Buchungen oder als Bestandteil eines größeren Analysepro-

zesses.

Da der Service auf der SAP BTP betrieben wird, profitiert die Einbindung zu-

sätzlich von den Vorteilen einer skalierbaren, sicheren und cloud-nativen

Infrastruktur.

Ob Webanwendung, mobile App oder automatisierter Job im Backend – der

KI-Service kann an jeder Stelle eingebunden werden, an der Anomalien er-

kannt und weiterverarbeitet werden sollen.

Mit dem in diesem Kapitel entwickelten Anomalieerkennungsmodell auf

Basis des Isolation Forests hat die SecureBank AG einen wichtigen Schritt in

Richtung automatisierte Betrugserkennung gemacht. Durch die Bereitstel-

lung des Modells als API steht eine flexible Schnittstelle zur Verfügung, die

sich problemlos in bestehende Systeme integrieren lässt. Die Operationali-

sierung über GitHub und Docker sorgt dabei nicht nur für eine saubere

Versionierung, sondern ermöglicht auch eine unkomplizierte Nutzung an

verschiedenen Standorten. Dank der nahtlosen Einbindung in die SAP

Business Technology Platform (SAP BTP) über den SAP AI Core ist eine voll-

ständige Integration in die SAP-Infrastruktur der SecureBank AG gewähr-

leistet.

Für die Mitarbeiter bedeutet das: Sie können sich künftig auf die gezielt als

auffällig gemeldeten Transaktionen konzentrieren, anstatt jede einzelne

Buchung manuell prüfen und überwachen zu müssen. Die Anomalieerken-

nung wird so zum immer aktiven »Service-Begleiter«, der verdächtige Vor-

gänge automatisch identifiziert und zur weiteren Überprüfung bereitstellt.

4.5 Zusammenfassung

161

Damit ist die SecureBank AG in der Lage, Risiken effizienter zu managen

und ihre Geschäftsprozesse nachhaltig zu optimieren.

4.5 Zusammenfassung

Moderne KI-gestützte Anomalieerkennung ist ein zentrales Werkzeug, um

Betrug und Fehler in Transaktionen frühzeitig zu erkennen und Schäden

wirksam zu verhindern. Durch die intelligente Kombination aus hochwer-

tigen Daten, durchdachter Vorbereitung und dem gezielten Einsatz spezia-

lisierter Machine-Learning- und Deep-Learning-Algorithmen wie Isolation

Forests, Autoencodern oder Transformer-Modellen können auch in großen

Datenmengen in Echtzeit verdächtige Muster zuverlässig identifiziert wer-

den.

Der Weg von der lokalen Entwicklung über das Training und Deployment

des Modells bis hin zur professionellen Integration als produktiver Cloud-

Service (etwa mit SAP AI Core) zeigt, wie technische Exzellenz, Automatisie-

rung und Skalierbarkeit in der Praxis Hand in Hand gehen. Die konsequente

Einbindung von DevOps-Methoden, API-Schnittstellen und automatisier-

ten Workflows garantiert nicht nur Effizienz und Reproduzierbarkeit, son-

dern auch die Einhaltung regulatorischer Vorgaben.

Das Anwendungsspektrum reicht dabei weit über die klassische Betrugser-

kennung hinaus und bietet auch in anderen Bereichen – von der internen

Buchhaltung über die Logistik bis zur Produktion – einen echten Mehrwert.

Entscheidend für den Erfolg sind stets eine klare Zieldefinition, eine enge

Zusammenarbeit aller beteiligten Fachbereiche und die kontinuierliche An-

passung der Systeme an sich wandelnde Bedrohungen und Geschäftspro-

zesse.

Die automatisierte Anomalieerkennung mit KI ist heute ein wesentlicher

Erfolgsfaktor für moderne Unternehmen. Sie schafft nicht nur Sicherheit

und Vertrauen, sondern bildet auch die Grundlage für Innovation, Effizienz

und nachhaltigen Geschäftserfolg.

