7 Quality Inspection

Quality inspection plays a central role in quality management. If solid foundations were laid in quality planning, quality inspection can begin. Inspection lots are generated by material movements, production orders, or deliveries, or are created manually. Inspection lots then undergo quality inspections based on predefined properties. Along with the inspection-lot completion, important information is transferred to the quality info system and is then available for quality control.

Quality inspection is basically divided into inspection-lot creation, results recording, inspection-lot completion, and appraisal-costs processing. Figure 7.1 shows an overview of the quality inspection process.

Figure 7.1 Quality Inspection Process

7.1 Basic Principles

First, we will explain a few terms and contexts that are important for understanding the following sections.

Inspection Lot

Inspection lots represent a request to inspect a specific quantity of a material. Inspection lots are can be created automatically or manually.
In materials management, inspection lots can be generated through goods movements. Such goods movements are:

- Goods receipt
- Goods issue
- Stock transfer

In production, inspection lots can be generated through recurring batch inspections or through the release of:

- Production orders
- Process orders
- Run schedule headers
- Goods issues from production

In sales and distribution, inspection lots come about through creating deliveries to customers or receiving returns from customers.

Customizing tip In Customizing, you determine through which events an inspection lot is to be created.

The size of the inspection lot is the entire quantity of a material available for inspection. This is not to be confused with the sampling quantity, which specifies how many parts of the inspection lot are to be inspected. Inspection lots are only created if an inspection type has been entered in the quality view of the material (material master) and has been activated. In the inspection lot the following important data is stored:

- Inspection specifications
- Inspection results
- Appraisal costs
- Usage decision

Stock Types

The stocks can be assigned to three stock types:

- **Unrestricted-use stock**
 Freely available material that either has already been released or doesn’t undergo any quality inspection—identifier: blank or F

- **Inspection stock**
 Material that is currently undergoing a quality inspection—identifier: X or 2
Blocked stock

Material that is currently blocked—identifier: S or 3

An inspection lot may or may not be stock-relevant. This depends on the inspection lot generation and on the inspection-lot origin. Manually generated inspection lots and the inspection lots with the following origins are not stock-relevant:

- 02 Goods issue
- 03 Inspection during production
- 06 Customer returns
- 07 Audit inspection
- 10 Delivery of the customer order
- 11 Delivery without customer order
- 12 General delivery
- 13 Production order for run schedule header
- 14 Maintenance

If a goods movement is a stock-relevant transaction type such as the inspection-lot origin 01 (Goods receipt for purchase order), the inspection lot quantity goes into the inspection stock. Through the *inspection lot stock* in the usage decision, you can transfer the material from the inspection stock to an unrestricted-use or blocked status or also return it to the vendor.

Ship to Stock

Depending on the quality capability of your vendor, you will possibly want to partly or completely skip acceptance inspection. Skipping individual inspections is called *ship to stock* (direct delivery into the warehouse), *inspection skip*, or—in SAP terminology—*skip*. You can control this via dynamic modification rules. If a vendor of a material is located in skip, this means no acceptance inspection is required. The inspection lot is automatically released after a predefined period of time, and the quantity is posted from inspection stock to unrestricted-use stock.

Delivery Certificate

The QM module supports the management of the receipt of certificates which must be part of the delivery. Such certificates can, for instance, include works-test certificates, material certificates, model inspection reports, or inspection confirmations. The certificate receipt is confirmed during goods receipt (see Figure 7.2). If the certificate is missing, you cannot make any usage decision at this stage.
During the usage decision at the latest, the receipt of the certificate must be confirmed so that the material can be posted to the unrestricted-use stock.

System Status

If you closely examine the display of an inspection lot, you will notice the field **System status**, which displays the inspection-lot status with different four-letter abbreviations. It makes sense to monitor this status, as it reveals important details. It is particularly useful in the search for defects, when the system does not behave as you expect it. You can often find out the reason quickly by monitoring the status. Table 7.1 shows the long text of the status notifications.

You can display the long texts of the status by using the following menu path: **Extras • Inspection lot status**, or clicking on the corresponding icon.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Meaning</th>
<th>Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALC</td>
<td>Sample calculated</td>
<td>PREQ</td>
<td>Plan/specification required</td>
</tr>
</tbody>
</table>

Table 7.1 System Status of the Inspection Lots
Basic Principles

In order for an inspection lot to receive the status “REL,” and to be released for inspection, the following steps usually must be completed (although there are exceptions):

- The inspection lot has been created (inspection-lot number has been assigned).
- An inspection plan or a material specification has been assigned.
- The sample has been determined.

The inspection lot status tells you which steps have been taken. If not all the steps could be performed, the inspection lot does not appear in the results recording worklist. If that happens, refer to Section 7.3, *No Inspection Lot in the Worklist*, which explains what you have to do then.

User Status

With the user status, you can display status information. You can, for instance, display information on whether a supplied material has the status *Model*, *Series* or *Change sample*. This status can also be manually changed by the user.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Meaning</th>
<th>Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCTD</td>
<td>Inspection characteristics created</td>
<td>PII</td>
<td>Inspection instruction printed</td>
</tr>
<tr>
<td>CHCR</td>
<td>Characteristic must be created</td>
<td>PRI</td>
<td>Sample-drawing instruction printed</td>
</tr>
<tr>
<td>CROK</td>
<td>Certificate receipt confirmed</td>
<td>QLCH</td>
<td>Quality level relevant</td>
</tr>
<tr>
<td>CRTD</td>
<td>Created</td>
<td>REL</td>
<td>Released</td>
</tr>
<tr>
<td>CTCM</td>
<td>Certificate confirmation missing</td>
<td>RREC</td>
<td>Results confirmed</td>
</tr>
<tr>
<td>DEF</td>
<td>Defects were recorded</td>
<td>SKIP</td>
<td>Skip lot</td>
</tr>
<tr>
<td>DU</td>
<td>Usage decision has been made</td>
<td>SPCO</td>
<td>Stock posting completed</td>
</tr>
<tr>
<td>FLEX</td>
<td>Specifications assigned</td>
<td>SPRQ</td>
<td>Quantity posting required</td>
</tr>
<tr>
<td>ICCO</td>
<td>All inspections completed</td>
<td>STIC</td>
<td>Short-term inspection completed</td>
</tr>
<tr>
<td>INSP</td>
<td>Inspection active</td>
<td>STUP</td>
<td>Statistics updated</td>
</tr>
<tr>
<td>PASG</td>
<td>Plan/specification assigned</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 7.1 System Status of the Inspection Lots (cont.)
Status Profile

In addition to the user status, you can enter a status profile in the quality info record (or Q info record). A corresponding status profile enables you to control the inspection type and also the use of a specific inspection plan, depending on the status of a vendor relationship (model, series, etc.).

7.2 Inspection-Lot Creation

In order to create an inspection lot, the basic data for the material must be maintained. For this reason, the quality view of the material master must have been created, and at least one inspection type must have been entered in the inspection data and activated. According to the properties of the inspection type, a valid inspection plan or a material specification must exist. Whether and to which degree a sample is to be drawn depends on the details in the quality view of the material, the quality level, and the details in the inspection plan or routing.

Inspection lots can be created manually or automatically.

Manual Inspection-Lot Creation

Although we assume that inspection lots are usually automatically created, it can be necessary to manually create an inspection lot. Reasons can be:

- Subsequent inspection of a released material because of a suspicion of defect
- Inspection of a material whose gr inspection was skipped
- Inspection of a material because of a complaint by production or a customer

The process of the manual inspection-lot creation, which we will look at by using a simple example from materials management, begins with the selection of the corresponding menu.

We will make the following selection from the R/3 main menu:

Logistics • Quality Management • Quality Inspection

and

Inspection Lot • Processing • Create

In the initial screen we enter our Material (here: 105969), the Plant (here: 0001 and the inspection-lot origin (here: 01 = goods receipt). ☐ brings us to the screen Create Inspection Lot Manually (see Figure 7.3).

The system has already assigned the internal inspection-lot number. This means the only thing we still need to do is to enter the relevant information into the mandatory fields Inspection-lot quantity and Vendor. Note that the inspection-
lot quantity represents the entire quantity of the goods and that from here you
determine the size of the sample according to the sampling plan rules that you
have defined in the inspection plan or the inspection percentage record.

Figure 7.3 Manually Creating an Inspection Lot for Goods Receipt (© SAP AG)

After you have filled out the required entry fields and confirmed this with
, the inspection lot is created, and the sample is determined, provided that a valid
inspection plan exists. If no inspection plan exists, the error message “No plan
could be assigned” will be displayed. As soon as you save the inspection lot, it is
available for further processing.

Note that the manual inspection lot for the goods receipt does not change the
stock type. If the material is already in the unrestricted-use stock, it remains in this
stock type as long as it is not specifically reposted. Here, the manual inspection
lot differs essentially from the automatically generated inspection lot of the goods
receipt.

You can also create a manual inspection lot for a production order. However, this
is only possible if no inspection lot has already been created for the same produc-
tion order, because no more than one inspection lot can be created per order (un-
less inspection points or batch inspections are planned). Do not enter any material
number in the initial screen. Only enter the Plant and the Inspection lot origin.
(e.g., 03 = Production). Once you have pressed , a screen created in a different way than during the inspection lot is displayed for the goods receipt (see Figure 7.4).

![Create Inspection Lot Manually: Production Data](image)

Figure 7.4 Manually Creating an Inspection Lot for Production (© SAP AG)

Under *Order*, you must now enter the production order number. The system itself then retrieves the other details such as material number and the quantity from the production order. If an inspection plan exists, the sample calculation can be carried out, and an inspection lot is created.

Automatic Inspection-Lot Creation

It would be advantageous for most companies to configure the QM module in such a way that a goods receipt for a purchase order automatically creates an inspection lot. You can notice this during the goods-receipt posting as there, in the status bar, the notification “Quality inspection in preparation” is displayed briefly. Once you save the goods receipt posting, the inspection lot is created and the inspection documents are printed out.

If the inspection type is configured correspondingly, the goods also can be posted to the inspection stock when the inspection lot is created. In this respect the au-
tomatically generated inspection lot differs from the manually created inspection lot, for which the stock type of the goods does not change.

In production, the inspection lots can also be automatically generated. The system can, for instance, be configured in such a way that the inspection lot is created upon the release of the production order, or upon issue of goods from production. In sales and distribution, an inspection lot would typically be created for a goods issue. If inspection lots are created for serialized materials, the serial numbers can be transferred to the inspection lot.

Inspection Documents

As soon as an inspection lot has been created, the relevant shop floor papers are printed out (in Customizing, you can define if this is to happen automatically). These papers consist of the following:

- **Sample-drawing instruction**

 The sample-drawing instruction specifies whether and to what degree the sample is to be drawn from the total quantity. Furthermore, the printout contains additional information such as the material document number, the material number, and the inspection lot number. It is advisable to customize the report according to your own requirements.

![Sample-drawing instruction](image)

Figure 7.5 Example of a Sample-Drawing Instruction
Inspection instruction

For an inspection with an inspection plan, the inspection instruction contains the inspection operations, characteristics, and the test equipment as well as other additional information. Figure 7.6 contains an example. If the shop floor paper has been designed appropriately, the inspector can note results on the inspection instruction.

If your system is configured in such a way that the inspection instruction is not printed automatically, or if you want to print out one of the inspection documents again, go to Quality inspection and select the following path:

Inspection Lot → Processing → Display

After entering the required inspection lot number (if necessary, via Select Inspection Lots) the inspection lot is displayed as shown in Figure 7.7.

Through the menu path Extras → Print you can now specify whether you want to print the Sample-drawing instruction or the Inspection instruction.
Results Recording

By using the sample-drawing instruction you can draw the sample in the goods receipt and send it to the quality assurance department. There, the inspection is executed on the basis of the inspection instruction.

7.3 Results Recording

Results recording is carried out to document your inspection. If you want to execute a results recording according to characteristics, you must be able to assign an inspection plan or a material specification to the inspection lot. In this book, we assume that you inspect according to inspection plans and that there is at least one inspection operation with one or several inspection characteristics.

The Worklist

As is the case with many applications of the R/3 system, there is also a worklist for inspection-lot processing. Before you can begin the results recording, the corresponding inspection lot must be located in the worklist.

From Release 4.6, the Easy Access design introduced a few new transactions that can be easily recognized from the "N" placed at the end of the transaction code. The display of the worklist for results recording with the Transaction QE51N is one of the changes to the QM module. The advantage of this newly designed view is
the combination of the worklist in list form with the screen for results recording
in one screen. As an option, you can also use a screen segment for help display
during the learning phase. The size of each screen window can be set individually
and depends on the hardware used such as monitor and graphics card. Figure 7.8
shows an example of a worklist for results recording with this new type of display.

The familiar results recording transactions from Releases 3.1, 4.0, and 4.5 can now
be found under the menu item Variants for Results Recording. The following se-
lection options are available there:

- Using List
- For Physical Samples
- For All Inspection Lots
- For Inspection Points
- For Master Inspection Characteristic

Select Transaction QE51, which is common to all releases, through the menu tree
with Worklist - Variants for Results Recording - Using List, and only enter the
processing mode Char. filter “1” (for “All Characteristics”). You will then obtain a
list of all inspection lots in the worklist. You can use this structure list in order to
enter your individual selection criteria. For instance, you can limit the selection by
date, material number, vendor number, or work center.
The other sub-menus enable an optimized display of the worklist for specific applications, such as the management of physical samples in the process industry.

Figure 7.10 contains an example of such a worklist. It displays three inspection lots where the hierarchy tree for the inspection lot with number 136067 has been expanded so that under the inspection lot name the operation (GR inspection) and inspection characteristics (0010–0030) are displayed as well.

No Inspection Lot in the Worklist

Sometimes it can happen that although an inspection lot is created (Status CRTD) it does not contain the status RELEASED. This means that it cannot be seen in the worklist but rather only via the following menu: **Inspection Lot > Processing > Display**. If the inspection lot hasn’t been released, no plan can be assigned in most cases. This can occur for several reasons:
The identifier for the automatic specifications assignment is not set in the material master record.

No valid inspection plan/material specification is available.

The inspection plan/material specification is not released.

The inspection plan is not yet valid at the key date or is no longer valid.

The revision of the material and the inspection plan are different.

The plan usage and the inspection type in the material master don’t match.

In the material allocation to routings, the inspection plan is assigned to a vendor other than the one that actually supplied the material.

Several inspection plans exist, and thus a clear assignment is not possible.

Looking at this list—and it is not even a complete one—you realize that it can be hard to learn why a task-list assignment is missing. You will find it informative to look at Chapter 6, *Quality and Inspection Planning*, on this matter. When displaying the worklist for results recording, you must note that the processing mode performs a selection. The processing modes available in the standard version only allow the display of inspection lots with characteristics. Inspection lots without characteristics cannot be displayed with this transaction.

If the inspection plans have been correctly created, the assignment must also function properly during the inspection-lot creation. However, if you should notice that the inspection lot cannot find any inspection plan, you can still correct this problem through the following path: Inspection Lot • Processing • Change.

To do this, use the list above as a check list and check for the possible defects listed above. If you have found the defect and corrected the inspection plan, then go to the menu Processing • Change and assign the changed inspection plan, or—if several inspection plans are involved—the correct one via Insp. specifications.

Once you have pressed the [✓] key, the status changes from CRTD (created) to REL (released).

After Saving, the inspection lot is displayed in the worklist, and the inspection documents are printed out.

Tip In order to avoid having to execute this inspection-lot change too often, it is possible to recognize this situation at an earlier stage. As soon as an order has been created, you can check if the system finds a valid inspection plan for the material ordered. In order to perform this check, go to Quality Planning • Inspection Planning • Inspection Plan • Missing or Unusable Inspection Plans in Procurement.
The good thing about this list is that you can go directly to the material view in order to check the entries there. Unfortunately, there is no corresponding function that enables you to view the corresponding inspection plan as well.

The evaluation Missing or Unusable Inspection Plans works in the same way. The only difference is that all selected material numbers are checked there whether or not a procurement order has been created.

It is advisable to carry out this check regularly (for instance weekly) or—better still—to plan a job which automatically runs every Sunday and provides you with the results list through SAPoffice.

7.3.1 Characteristics Results

If your company, like others that have implemented a quality-management systems, does plan inspections, the inspection plans contain at least one inspection operation and one inspection characteristic. As soon as an inspection lot has been created, it is displayed in the worklist. The easiest way to enter into the characteristic results is by double-clicking on the operation (here: *GR inspection*). For this
reason, the hierarchy tree of the inspection lot must previously have been expanded as can be seen for inspection lot number 136067 in Figure 7.10.

If you go to the screen Record Results: Characteristic Overview (see Figure 7.12), all characteristics are displayed that should be inspected.

In Chapter 6, Quality and Inspection Planning, we described that it is possible to plan variable and attributive characteristics for the inspection. This means the confirmation of the inspection results is also different. In our example (see Figure 7.12) you must record results for three attributive characteristics.

The Characteristic Overview screen contains the following three tabs:

- General
- Summarized
- Indicators

Instead of the summarized recording, inspection planning can also provide for the recording of classed values (i.e. the number of events within value classes) or of individual values (if necessary, by entering the number of the unit to be inspected). The name of the tab changes accordingly. A separate screen is available.
for recording individual values, in which you can enter the characteristic values per individual item or serial number.

If independent multiple samples were provided for by inspection planning, you can record results for several samples per inspection characteristic. It is even possible to enter a higher number than the number of pieces specified in the sample procedure.

Other planning variants for attributive inspection are double and multiple samples. For inspections according to AQL (ISO 2859), the result of a sample can lie between the acceptance number and the rejection number. Consequently, the sample will be increased. A new evaluation takes place after recording the results for the new sample.

The inspection characteristic changes its status during the individual processing steps. Possible statuses are:

- The characteristic must be/can be processed
- Skip
- Processed
- Evaluated
- Completed

Figure 7.13 Characteristic Status (© SAP AG)

When you call the screen Record Results the General tab is activated, and the column Result is ready for entries. You can begin recording the characteristic results.

Attributive Characteristic Results

Our example provides for the confirmation of attributive (qualitative) characteristic results. If you want to record qualitative results, you can only record the evaluation “Acceptance”/“Rejection” or the more differentiated evaluation by using the catalog for characteristic attributes. Figure 7.14 contains an example of a simplified characteristic catalog.
However, in a worst-case scenario the information “Other Characteristics not OK” is not very informative. Therefore, a somewhat more meaningful catalog should be used. Figure 7.15 shows an example of this.

You can save an inspection description for each characteristic as additional information.

When making entries in the Characteristic Overview screen, the specification of the quantity to be inspected is also used as the inspected quantity. However, especially for units with non-conforming characteristics, it is worth knowing the number of samples that contain the defect. In order to record this information, you need to select the characteristic by highlighting it and following the menu path Edit · Characteristic · Choose or by double-clicking on it. This selection brings you to the screen Characteristic Single Screen, and you can enter the exact quantity for Inspected and Non-conforming.

An example of our CD lid characteristic “width” is shown in Figure 7.16. In this example instead of the required eight pieces, only seven pieces were inspected. This means that upon completion, the message “The inspected sample scope does
not match the planned scope" is triggered. However, this warning can be skipped by using the **Force** function. This message is triggered by the control indicator for the inspection characteristic **Fixed Inspection Scope**.

Processing of the characteristics must be completed at the end of the results recording. This task can be carried out for each individual characteristic or for all characteristics together. First select all characteristics, and then select the menu **Edit • Characteristic • Close**.

If not all characteristics have been confirmed, or if the quantity inspected is different from the specification (as in Figure 7.16), you will obtain a notification. You can skip this message and force the completion. If no error code has been specified for a characteristic and you force the completion, the system requires you to decide whether the characteristic is to be saved as accepted or rejected. This entry is important in enabling the system to make specific suggestions for the usage decision, as we will see.

Quantitative Characteristic Results

In contrast to the attributive (qualitative) characteristic results for quantitative (variable) characteristics, also you can confirm specific measured values. In this context it is also possible to include both qualitative and quantitative characteristics in an inspection operation.
In the case of quantitative characteristics, the Characteristic Overview is different from that shown in Figure 7.10, as there's an additional tab available: Unit of Inspection.

The reason for this is that the control indicator Individual result was selected under Result confirmation during the creation of the characteristic in the inspection plan. This means you can number the sample devices serially (or use an existing serial number) and enter a measured value for each unit of inspection. In order to enter the measured values, you should use the screen Single Values for Characteristics. To do this, you only need to click on the characteristic.

In addition to the individual results per unit of inspection, you can also plan a summarized recording or a classed recording. For variable measured values, the summarized recording only makes sense if you do not need any original values, as the mean value is created on the basis of the entered values. This type of recording could also be helpful if, for instance, you measure the diameter of a shaft at several points but only the mean value is to be documented. A classed recording can be useful if you plan an evaluation with the histogram, as the planned measured-value classes are also used to display the histogram.

Let us take the example of our CD cover, described in previous chapters, in which the characteristic "0010 length" is created as a quantitative characteristic, Figure 7.17 shows entry values for a sample of seven units.

By closing the variable characteristic, a few evaluations take place, which you can also see in Figure 7.17. First, the result is evaluated with regard to acceptance/rejection. As all measured values were located within the required tolerances, the evaluation was completed with Acceptance (indicated on your screen by a green checkmark). In addition, the fields were correspondingly set with Inspected and Non-conforming, and the mean value and standard deviation were calculated. In addition, the Histogram function was called to display the standard distribution according to the measured values. In addition, you can also calculate and display the process capability indices cp and cpk.

For Figure 7.17, the new SAP Easy Access display that is available from Release 4.6 onwards was selected. In this display, all information is displayed in one screen. Of course this requires a correspondingly large monitor and a higher resolution. However, the options from older releases are also still available, in which the information is displayed in several overlapping windows on the screen. You can thus select your preferred display form by specifying the type of access in the menu tree.

Another way to display quantitatively recorded individual values is the run chart which displays the run of the measured values of a characteristic as a curve.
Results Recording

There, you can identify trends and the situation in relation to tolerance limits, although no action limits are displayed.

In many cases, these evaluation and display options should be sufficient and eliminate the need for an external statistical program. In those cases where the requirements for statistical evaluation are higher, the R/3 statistical interface (QM STI) provides the option of further processing the data with an external statistical software.

Tip If you must record the measured values as quantitative inspection results only occasionally, you can make the entries manually via the keyboard. However, if this occurs frequently, a keyboard wedge is advisable. You can directly connect test equipment to it and transfer measured values directly in the input screen. You will learn more on this in Section 7.10.

As is the case with the attributive characteristics, you also can force completion for quantitative characteristics without having entered any measured values. The system then displays a warning message and asks if the characteristic should be accepted or rejected.
Required and Optional Characteristics

In inspection planning, you can use the control indicators of the inspection characteristics to determine whether results recording is mandatory (required characteristic) or optional (optional characteristic). In the results-recording screen, this is indicated by the status of the characteristic (0 = optional characteristic). The processing doesn’t need to be completed; completion is absolutely necessary only for required characteristics.

In an enhanced hierarchy tree of the results-recording worklist, you can recognize on your screen the status of the characteristics also from the color. Required characteristics are displayed in yellow and optional characteristics are displayed in light blue (Transaction QE51).

Unplanned Characteristics

You might want sometimes to record results for a characteristic that wasn’t provided for in the inspection plan. To do this, you enter a new characteristic in the results recording. However, there is a little snag to it: You can only enter master characteristics.

Tip

You can simply create a master inspection characteristic called “Other characteristic” and enter this as required as an additional characteristic.

Provided you have already created this master characteristic, from the Edit menu of the screen Record Results: Characteristic Overview, call the item Create Additional Characteristic. Enter the source code for the master-inspection characteristic. The system then requests the sample procedure for this new characteristic, and you can then use it for results recording.

Results Recording Using Control Charts

In the QM module, you can use the following types of control charts:

- Mean-value chart considering tolerance values (acceptance chart)
- Shewhart chart for the mean value
- Shewhart chart for the standard deviation

The type of control chart used is established during the inspection planning of the characteristics and the sampling procedures used. You can specify if a separate control chart is to be used for each inspection lot or if you want to use a control chart for several inspection lots.
When the inspection lots are created, the control chart numbers are created automatically for the characteristics for which a control chart has been provided. In results recording, you can then enter measured values for these control charts, whereby for each track of the chart, a specific graphic window is opened. These windows display the results already recorded from the previous inspection lots and the newly entered ones.

Depending on the settings, either the system calculates the action and warning limits from the initial run or from the measured results, or you specify these.

The evaluation of the results recording can take place automatically. If, for instance, the action limits are exceeded or not reached, the characteristic is rejected. However, you can also manually run the evaluation.

If you want to complete a control chart, this can be done in almost the same way as the completion of an inspection characteristic. In the next inspection lot, a new control chart is then opened with a new number. You should not complete the control chart if it is to be used again for the next lots.

Inspecting Without a Plan

Until now, our descriptions were based on the assumption that the inspections are carried out on the basis of an inspection plan. However, this is not absolutely necessary. In the inspection data for the material concerned (in the material master) you can also omit the checkmark for **Inspect with plan**, and then an inspection without a plan is also possible. While sampling procedure per characteristic
is specified for inspections with a plan, this procedure must be entered in the inspection data for inspections without a plan.

With these settings, for instance, you can create an inspection lot at goods receipt. Unfortunately, this inspection lot is not contained in our results-recording worklist, as only inspection lots with characteristics are displayed there. However, since we have no plan, there are no characteristics for which a result should be recorded.

For such an inspection lot, we must go directly to *Inspection Lots without Usage Decision* without confirming inspection results. Therefore, in the input screen for the usage decision, only the two tabs **Defects** and **Inspection Lot Stock** are available. Of course, you can record defects for the usage decision (inspection lot), as described in Section 7.3.2. However, these can only be errors in the inspection lot and not on the operation or characteristic, as these are only possible during an inspection with a plan.

Evaluations

Once you have completed a characteristic it is evaluated and a decision is made on its acceptance or rejection. The evaluation is indicated on your screen with a green checkmark (acceptance) or a red X (rejection). You can set different types of evaluation:

- Manual evaluation
- Evaluation based on codes from the catalog of characteristic attributes
- Evaluation based on non-conforming units and/or the number of defects
- Evaluation based on the tolerance range of variable characteristics
- Evaluation based on the violation of action limits for quality control charts

If an automatic evaluation was provided for, but this could not be executed—if, for example, no characteristics or too few characteristic results were confirmed—an input window appears with the request to carry out a manual evaluation.

7.3.2 Defects

The recording of characteristic results as measured values, or via the attribute code of the characteristic catalog, is also referred to as planned characteristic results. In contrast to this, unplanned characteristic results represent the creation of a defect-data record. This is not to be confused with the negative characteristic results reflected in the characteristic catalog. The entry of defects represents an independent process that opens further options. It is, for instance, ideally suited to meet the standard requirements of ISO 9000 with regard to carrying out corrective and preventive measures.
Defects can be created at different stages of results recording for the inspection lot. Thus, we differentiate between the following defects:

- Defect for characteristic
- Defect for operation
- Defect for inspection lot

Let’s now run through the creation of a defect-data record in the case of “Defect for characteristic” and describe the options of this instrument.

In the Record Results: Characteristic Overview screen for each characteristic, you can see a paper symbol in the column Defect for characteristic. As soon as you click on this symbol, the input screen for the defect recording is called. You can also call the screen via the menu structure. Select the Edit menu, and under Defect you find the above-listed defect input options.

Before entering a defect you will first be prompted to select a defect code from Catalog 9, Defect Types. This is a different catalog than Catalog 1, Characteristic Attributes, which we know already from recording the characteristic results. The advantage of this type of defect recording is obvious: for each characteristic you can enter several Defects, the respective Number of Defects and a descriptive Text. You can see an example in Figure 7.19.

![Image of the Record Results: Characteristic Overview screen](image)

Figure 7.19 Defect Recording for the Characteristic (© SAP AG)
Tip It has been proven in practice that we can design defect catalogs for the characteristic attributes and the defect types in the same way, because each characteristic that is not OK also can be assigned a defect type.

Finally, from every level of the defect creation, you can activate a quality notification manually as well as automatically. This means you can inform an internal or external partner quickly about defects that have emerged. If several defects were recorded, for instance for different characteristics and for the operation, the quality notification contains a list of these defects. The automatic creation of a quality notification should be used with caution, as it is through this setting that a large quantity of created notifications emerges in the system, which must be systematically processed. In real life, the manual creation of the quality notification for a defect has proven to be the most reliable option. You will find additional details on the subject of Quality Notification in Chapter 9.

7.4 Inspection-Lot Completion

By Completing and Saving the characteristics, the results recording is completed. This means that an evaluation of all characteristics with regard to acceptance or rejection is available. In order for the inspection lot to be completed the usage decision, and, for stock-relevant inspection lots, the posting of the inspection lot stock still needs to be done.

The inspection-lot completion is assigned the following actions, which are manually taken or automatically run by the system:

- Evaluation of the inspection results
- Calculating the defect portions per lot
- Determining the quality scores
- Updating the quality level
- Making a usage decision
- Posting the stock
- Calculating the inspection costs
- Updating the key figures in the QM information system

As many of the actions mentioned above are directly related to the tasks of quality control, these will be described in detail in Chapter 8, Quality Control.
Inspection Results

In order to reach an informed usage decision with regard to an inspection lot, you must know the inspection results. The screen Record Usage Decision provides all the information needed to make the decision in the following tabs:

- Characteristics
- Defects
- Inspection lot stock (in so far as the lot is relevant to the stock)
- Inspection points (provided that inspection points have been planned)

By double-clicking on individual characteristics you can display additional details of the characteristic results, and you can read inspection descriptions.

![Usage Decision Screen with Characteristic Results](https://example.com/figure720.png)

Figure 7.20 Usage Decision Screen with Characteristic Results (© SAP AG)

Inspection Report

The inspection report displays the inspection results and comments on every characteristic on the screen or in the form of a printout. This means it can also be used to provide an overview of the inspection carried out or it can be referred to as a basis for the usage decision. It can also serve as an attachment to a quality notification to the vendor or to internal departments to describe in detail the deviations of individual characteristics according to type and scope in the case of defects.
In order to display the inspection report, select the following path from the menu tree: Quality Inspection · Info System · Inspection Result · Print. Then the selection screen Results print is shown.

If the inspection lot number is known, you can enter it directly. Otherwise, the selection allows you to make limitations through known parameters such as material number, vendor, date, among others.

Figure 7.21 shows an example of how such an inspection report could appear in the screen display. Of course, you can also print out this inspection report.

7.5 Inspection Costs

The consideration of quality-related costs also belongs to the tasks of quality management. In many companies these costs can form an essential part of the expenses. By recording and evaluating quality-related costs, a company can initiate improvements that increase efficiency and profitability.
Quality-related costs are usually divided into the following categories:

- Inspection costs
- Prevention costs
- Non-conformity costs

The collection and evaluation of costs in companies is carried out in the Controlling module (CO). In that module, the quality-related costs that were recorded in the QM module as inspection and non-conformity costs are merged and can be formatted for quality evaluation. There are different order categories to record costs from the different applications in CO. For example, to record costs from Quality Management, the QM order with order category 06 is provided. The QM orders are then once again divided into the following types:

- General QM order for inspection costs (one order for several materials/inspection lots)
- Individual QM order for inspection costs (one order for a specific inspection lot)
- QM order for non-conformity costs (one order for a quality notification)

![Figure 7.22 Recording Quality-Related Costs](image-url)
The inspection costs cannot be directly specified in monetary amounts. They are instead calculated on the basis of confirmed performance times achieved for the inspection operation in the Controlling module from the scales set. As in work scheduling, the performance times are compiled from time and labour data, setup times, and machine times. The confirmation of performance occurs with the results recording or the usage decision. In production, it is carried out together with the confirmations of the production order.

The non-conformity costs are recorded with the processing of the quality notification. For this reason, the QM order must be created manually as a cost collector in the quality notification. In this order, which is assigned to the notification header, you can record the costs such as rework costs, sorting costs, or warranty costs. This way, you can determine all types of non-conformity costs related to the quality notification, and if necessary charge the person responsible and further analyze the costs in Controlling.

The prevention costs which mainly include training measures are recorded through the Human Resource Management component.

7.6 Sample Management

In the process industries (for example chemical, pharmaceutical and food industries) the withdrawal and management of physical samples is very important. The generation of physical samples can be necessary at goods receipt or during production. The requirements of Good Manufacturing Practice (GMP) in the process industries are met with R/3 Sample Management.

The system supports the following types of sample generation:

- Automatic generation of physical samples during inspection-lot creation
- Manual generation of physical samples (if needed, with reference to an inspection lot)
- Manual generation of inspection lots for existing physical samples

Sample Data Record

For each physical sample, a physical-sample record is created which contains the following essential information:

- Sample number
- Sample type (from goods receipt, from production, from customer complaints)
- Physical-sample category (primary sample, pooled sample, reserve sample)
- Sample origin (material, batch, order)
- Detail data
Planned Physical Samples

If the physical samples were planned in a sample-drawing procedure, they are automatically generated during inspection-lot creation. The sample-drawing procedure determines how many samples are to be drawn, the scope of the samples, if the sample-drawing is to be confirmed, and what physical-sample category is to be used. This procedure is logically assigned to the inspection plan or routing. When the physical sample is generated, a sample-drawing instruction can also be printed out with the inspection-lot creation, which contains detailed information on how the sample is to be drawn.

The following physical-sample categories are available for selection:

▸ Primary sample
 The primary sample is drawn directly from a material/batch stock. You can inspect these samples or create pooled samples from them.

▸ Pooled sample
 This sample is created by mixing other physical samples from the same material/batch.

▸ Reserve sample
 The reserve sample is drawn from a material/batch stock and stored for other inspections.

If the material is supplied in different physical-sample containers, you can store corresponding instructions depending on the physical-sample container.

Unplanned Physical Samples

In the context of sample management, it can also be necessary to draw physical samples that were not planned. This can be done in two different ways:

▸ You can manually generate an entirely new physical sample.

▸ You can manually generate a physical sample for an existing physical-sample record.

Manual Inspection Lots

For each existing physical sample, you can also create manual inspection lots. These can, for instance, perform additional inspections for reserve samples or for samples that were not accepted by the customer.

As already described in Section 7.2, no stocks can be managed with manual inspection lots.
Confirmation
In the sample-drawing procedure, you can determine whether automatically created physical samples are to be released automatically or manually (confirmed). Upon confirmation of a physical-sample drawing, all corresponding physical samples are released. Under the security aspects of GMP, a manual confirmation can be required. In addition, there is the option of entering a digital signature, which ensures that certain activities (e.g., the confirmation) can be executed only by authorized employees. Manually created physical samples must always be confirmed manually.

Label Printing
For automatically created physical samples, you can print out labels for the samples. You can create these labels according to your requirements and ideas, and can print details such as name, date, time, batch, sample number, and inspection-lot number, and even add a barcode. Of course, you can also manually trigger label printing for the sample data record.

Results Recording and Usage Decision
The results recording for the physical sample is done in the same way as the inspection-lot results recording. The physical samples are located in a specific results recording worklist (related to the work center or the user) and can be processed from there. One or several physical samples can exist per inspection lot. Only when all physical samples for an inspection lot have been processed and evaluated can you make a usage decision for the inspection lot.

Unplanned (manually created) physical samples must first be manually released (confirmed), before you can record results.

7.7 Quality Inspection in Sales and Distribution
Inspection-lot generation and results recording in sales and distribution is only slightly different from the procedures in materials management. Instead of generating the inspection lot for goods receipt, the inspection lots are generated at goods issue, for specific goods movements (for instance for a return), or for a customer complaint. There is also the option here to manually create inspection lots.

The inspection-lot generation can also be connected to the material or customer so that the agreed inspections are only executed for specific customers or materials. Results recording in sales and distribution corresponds to the process already described.
Certificates
Different customers require specific certificates, for example on properties warranted, material quality, works test certificates, or inspection proof. You can configure the system so that these certificates are automatically generated for the respective customers and deliveries, and are automatically printed out or faxed.

7.8 Quality Inspection in Production
Regarding the essential processes, quality inspection in production basically corresponds to that in materials management. There are however a few important differences.

Inspection in production is based on the idea that inspections executed during the production process are your own responsibility (operator inspection). Therefore, quality inspection in production is integrated in production planning and execution. As we already described in Chapter 6, Quality and Inspection Planning, the operations of quality inspection in production are contained in the routing. The inspection operations are in principle not different from other production processes in the routing. It is only at the next level, at which the inspection operations are also assigned inspection characteristics, sampling procedures, and characteristic catalogs, that the additional functionality of the quality management module opens up. You can see an example of a routing with an inspection operation in Figure 7.23.

![Figure 7.23 Routing with Inspection Operation (© SAP AG)](image-url)
The release of a production order generates the inspection lots for the inspection operations. The entire quantity can also be split into partial lots. The inspection documents (sample-drawing instructions and inspection instructions) are printed out together with the shop floor papers. Due to the sequence of inspection steps in the routing you can map both in-process inspections and final inspections.

Inspection lots for production can be created manually, as well as through goods movements or a goods receipt from production.

The integration of inspections in the routings requires a close collaboration between inspection planning and work scheduling, provided this is not done by a central authority or a responsible person. In the production operation “Inspection,” the test equipment is displayed as production/resource tool. No separate inspection plans are required.

The inspection results are confirmed in the same way for each inspection lot and inspection characteristic as already described. Here, inspection in production is the same as inspection in the other applications.

The inspection completion is also accompanied by a usage decision (see also Chapter 8, *Quality Control*), although the quantity confirmation does not occur in the usage decision but rather in the production order for the corresponding operation. You enter the relevant quantities to unrestricted, to rework or to scrap. You have the options of partial confirmation, final confirmation, and automatic fi-
nal confirmation. Thus, you can first inspect a part of the production lot and confirm this, and at later time inspect and confirm the rest (final confirmation).

Inspection Points

If you want to perform inspections at specific time intervals, at specific points in time, after the production of specific production quantities, or in response to specific events, you need inspection points. Such events can for instance include a change of containers for finished goods or a shift change. A typical reason for the implementation of inspection points would be the hourly inspection of a sample from running production.

For the implementation, at least the following entries are required in the routing:

- Planning header—parameters for inspection points
- Operation (inspection)—inspection interval (quantity, time)
- Characteristic—sample size (fixed size)

The inspection points also enable the creation of partial lots as well as the assignment of partial lots to batches.

Control Charts

Typically, the control chart is used in production in the statistical process control (SPC) inspection. In a corresponding configuration of the QM module, you can use the R/3 system as an instrument for SPC in production. By using direct measured value entry (see Section 7.10), control charts, and inspection points, you can optimally monitor the production process without having to invest again in specific SPC software solution. You can use the existing IT structure of the R/3 system for the measured-value recording in production which will help you keep the hardware costs within reasonable limits.

Section 7.3.1 contains more information on control charts. You will find a detailed section on the subject of SPC in Chapter 8, *Quality Control*.

Batches

If you intend to implement batch management for your materials, you can assign batches to the partial lots and/or summarize several partial lots to a batch. The inspection results of the partial lots can be directly forwarded to the batch and used for the batch classification. The inspection results can also be used directly to create quality certificates.
Inspection in the QA Department

If your company’s independent inspections are planned in a quality assurance department (QA), this can be mapped without any problem. Inspection lots can also be created in production via goods movements. This means a goods movement leads directly to an inspection lot, or you can manually create such a lot, provided you have customized it correspondingly.

As inspection in this case is separated from production planning, you must set an inspection type and a relevant plan usage in the system. In addition, an inspection plan must be created with this plan usage. For instance, Inspection Type 04 which is available in the standard version, is suitable (goods receipt from production).

This scenario is more or less similar to goods receipt for purchase orders. As previously described, the results are recorded for the planned characteristics.

Example The process of an operator inspection is illustrated using an example from the company’s own plastics-molding plant. We make the following assumptions here:

- We mold a plastic part in our own production (production by lot size).
- The quality inspection is active for the material.
- Attributive characteristics exist for an inspection operation in the context of a plant operator inspection.
- The release of the production order automatically creates an inspection lot.

Consequently, this inspection lot must be available in the worklist. Therefore, we select the selection screen for Results Recording, as it was described in Section 7.3. In order to restrict the inspection list to the data which originate from production, it is useful to first enter the inspection lot origin in the selection screen (03, Production).

If you compare Figure 7.25 with the worklist from materials management (see Figure 7.10), you will see that there is essentially no difference between the two apart from the number range of the inspection lot numbers. Further inspection and results confirmation are also quite similar in both worklists. Therefore, we refer you to the corresponding process in Section 7.3.1.
7.9 Quality Inspection in Procurement

Now that we have covered the processes in materials management, we will describe in more detail two specific scenarios that can occur on a daily basis.

Scenario

Changing the status of a material upon goods receipt from “subject to quality inspection” to “not subject to quality inspection”

Let’s look at the following situation: An eager colleague maintained some materials as “subject to quality inspection” in the R/3 system, although they are not to be inspected. This defect is not noticed at first. The purchaser can create its purchase order without a problem and send it out. One day there is a delivery of material, such as a pallet of toilet paper, and immediately upon the goods-receipt posting the goods are in the inspection stock. Depending on the configuration of the system, an inspection lot is generated at the same time. At the latest, when someone wants to take the toilet paper from the warehouse stock, they will notice that it is located in the inspection stock, and was incorrectly provided for a GR inspection.

In order to salvage the situation, a usage decision is made for the current inspection lot and the goods are posted from the inspection stock into “unrestricted stock.” This means the goods are available and can be withdrawn. In order to ensure that this unwanted inspection lot does not cause incorrect key figures, the inspection lot is canceled, which can be easily done via Inspection Lot · Usage Decision · Change with or w/o History and Usage Decision · Functions · Cancel lot.

In order to correct this defect for subsequent deliveries, it is sufficient to set the inspection type as inactive in the quality management view of the material by un-checking the Active field. If the inspection type is no longer active, the material is
no longer subject to quality inspection. As it does not make sense to keep the in-
spection type in the quality management view of such a material master, it is even
better to delete the inspection type entirely.

In some circumstances, this may not be sufficient. If a larger quantity was ordered
by purchasing and only a partial quantity is delivered due to a scheduling agree-
ment schedule, this means that the same problem will occur again at the next
goods receipt, and it even will happen if the inspection type was deleted in the
meantime! The explanation for this is that the respective time validity periods
must be taken into account. The purchase order is based on whether the material
is subject to quality inspection at the time of the purchase order. If the material,
as in our case, is later changed to “not subject to quality inspection,” this does not
in turn affect the current purchase order, but rather affects purchase orders which
are newly created.

The reverse scenario is also not unusual. Let’s assume that after the posting of a
goods receipt you find out that this material should actually always undergo a GR
inspection. In order to ensure that the following scenario of a catch-up GR inspec-
tion also makes sense, we will assume that the goods are still available, so that on
the one hand a sample can still be drawn and on the other hand the goods can be
blocked due to a negative inspection result.

Tip If a material that was planned for quality inspection is changed in such a
way that it is no longer subject to quality inspection, you should check if open
purchase orders exist for this material. If this is the case, the change only af-
flects new purchase orders. However, if you want this change to take effect im-
mediately, the current purchase order must be changed. To do this, you must
uncheck the Quality inspection field in the Change purchase order menu and
save the purchase order. Before you do this, the inspection type in the quality
view of the material master must be set to inactive.

Scenario

Changing the status of a material upon goods receipt from “not subject to quality
inspection” to “subject to quality inspection”

The solution to this scenario is quite simple: You perform the required actions for
inspection planning for this material afterwards, then cancel the goods receipt and
carry a new goods-receipt posting. The change from “not subject to quality inspec-
tion” to “subject to quality inspection” takes immediate effect here. In other words,
the new goods receipt posting now generates an inspection lot, and the goods are
posted to the inspection stock. This also applies to all other purchase orders and
goods receipts, as long as you don’t undo the inspection planning settings.
Index

A
ABAP 77, 407, 416, 521
AcceleratedSAP 509
Acceptance chart 266
Account assignment 446
Action 360
Action log 369
Activities 357
 status 357
Address 109
Advanced Planner and Optimizer 521
Allocation to reserve 294
Application Link Enabling 521
Application Service Providing 521
Application toolbar 102
Appraisal costs 245
ASAP 509, 521
Assemblies 347
Assignment values 209
Audit 309, 311, 403
 inspection 247
 management 66, 463
 process 312
 product 312
 quality 312
B
Balanced Scorecard 521
BAPI 292
Basel II 35
Batch 127, 279, 521
 input 73, 521
 inspection 246
 log 330
 master record 152, 521
 where-used list 300
Blocked stock 247
Business Add-In 64, 521
Business blueprint 511
Business completion 522
Business Content 417
Business Information Warehouse 521
Business Intelligence 81, 417, 521
Business process 20, 37, 521
Business Workflow 355, 367
Business-to-Business Procurement 521
Buyer’s negotiation sheet 385
C
Calibration 430, 446
Calibration order 452
Cancellation 281
CAQ 77, 284, 285
Carrying out a project 509
Catalog 155, 156, 262, 270, 294, 521
Catalog profile 348, 366
Certificate 57, 92, 247, 277, 299
 creation 95
 processing 240
 profile 242
Certification 21
Change document 304
Change master record 150
Characteristic
 dependent 206
 leading 206
 unplanned 266
Characteristic result 259, 268
 quantitative 263
Characteristic status 261
Checkboxes 105
Client 74, 97, 521
Client number 97
Coding 345
Collaboration 522
Company code 75, 522
Compare evaluations 319
Complaint 296, 345
Complaints management 341
Component 54
Composite Application Framework 81
Confirmation 276, 278, 522
Consulting 67
Continuous improvement 38
Control chart 266, 279, 325
Control indicator 142
Controlling area 75, 522
Coordinator 109
Cost center 522
Cost center accounting 333
Cost object controlling 333
Cost types 333
Costs report 335
Costs, quality-related 273
Customer complaint 276, 343, 377
Customer master 151
Customer master record 522
Customer subscreen 344
Customizing 73, 471, 522
Cycle 449
Cycle start 400

D
Dangerous Goods Management 34
Data of substances 33
Data transfer 491
Data Warehouse 418, 522
Default values 108
Defaults 109
Defect 268
 analysis 346
 location 296
 type 295
Defects 295
Delivery 309, 313
Dialog box 104
Display functions 117
Document 370
Document management 370, 433
Document Management System 29
Document master record 433
Documentation required 302
Download 76
Dynamic modification 299, 301, 305,
 328, 522
Dynamic modification rule 165, 329,
 330, 522

E
Early Warning System 414
Easy Access 60, 99, 255, 264
EFQM 35
Engineering Workbench 209
EnjoySAP 60, 522
Enterprise Core 60
Enterprise Extension Set 60, 66, 390
Enterprise Portal 80
Enterprise Resource Planning 522
Environment audit 31
Environment management 31
Environment management system 19
Environment, Health & Safety (EH&S)
 33
EPC method 37
Equipment 434, 522
 master record 434, 442
 number 442
 type 443
Error messages 104
Evaluation 268, 270, 321, 367, 407
 criteria 309
 sheet 320
Event-driven Process Chains 473
Exception 414
Exchange Infrastructure 80
Executive Information System 523
External service provision 309

F
Favorites 100
Flexible Analysis 323, 410
Follow-on action 304, 360
Force 263
Formula 412

G
General task list 447, 523
Glossary 116
Good Manufacturing Practices 330
Goods issue 246, 276
Goods movement 246
Goods receipt 246
 list display 118
Goods receipt inspection 311

H
Hardcopy 106
Help 113
 application 113
 direct 113
 input 114
 menu 114
Histogram 264, 327, 523
MiniApps 87
Mobile Infrastructure 81
Model 250
Module 54
Multiple sample 165
mySAP Business Suite 66, 80, 523
mySAP CRM 80, 524
mySAP ERP 58, 79, 80, 403, 524
mySAP PLM 66, 80, 403, 524
mySAP SCM 80, 524
mySAP SRM 80, 524

N
New Dimension 524
Non-conformity costs 273, 331
Notification header 343
Notification overview form 363
Notification status 91
Notification type 339
Number assignment 369
Number range 369, 489

O
Operation 97
Operator inspection 277
Order 335
OSS 517
Overall score 315

P
Partner 345, 524
Password 97
Physical-sample record 274
Planning 413
Planning data 451
Planning plant 446
Plant 75, 524
Plant Maintenance 431
Prevention costs 273, 331
Price 309, 314
Print 106, 254
Printer 76
Problem notification, internal 381
Procedure Model 471, 473
Process 22
 capability 327
 industries 274
 management 20
 order 246
Procurement 440
Product safety 33
Production 278
 control 56
 order 246, 251, 278
 resource tool 432, 525
 resource/tool 154, 433
Profit center 525
Program interface 292
Project management 474, 482
Project meeting 69
Project plan 68
Project team 68
Purchasing info record 308
Purchasing organization 75, 308, 525

Q
QM order 273, 335, 361
Quality assurance agreement 29
Quality management system 19
Quality 309, 313
 capability 329
 certificate 92
 control 293
 costs 331, 333
 documents 154
 element 22
 info system 30, 295
Quality inspection 245
 in procurement 281
 in production 277
 in sales and distribution 276
Quality inspector 84
Quality level 167, 218, 270, 299, 305, 315, 329, 525
Quality Management Information System 30, 409
Quality manager 87
Quality notification 88, 270, 271, 274, 295, 337
Quality order 384
Quality planner 85
Quality planning 334
Quality score 270, 298, 385, 525
Quality-related costs 299, 331, 333, 361
Quantities 358
Quantity posting 294
Query 416

R
R/2 53, 112
R/3 53
R/3 Enterprise 58, 60, 395
Random sample inspection 525
Ranking Lists 321
Re-engineering 72
Reference model 39, 473
Reference object 365, 449
Reference operation set 182
Release 58
Release Notes 116
Report 76, 415, 457, 525
Report list 407
Report Writer 415, 525
Request status 453
Required characteristic 298
Required input fields 105
Response profile 366
Result history 407
Results entry 266
Results recording 245, 255, 270, 276, 302, 395
Return 246, 295
Risik management 35
Roles 82
Roll concept 84
Routing 153, 178, 278, 525
Run chart 264, 328, 457, 525
Run schedule header 246

S
SAA standard 525
Safety at work 33
Sales and distribution 234
Sales summary 378
Sample 294
c control 162, 171
management 274, 275
size 169
Sample-drawing instruction 253, 525
Samples 257, 274
physical 375, 389
Sampling instruction 525
Sampling procedure 204, 525
Sampling scheme 162, 525
Sampling system 525
SAP 53
SAP GUI 75
SAP library 114
SAP NetWeaver 79, 80, 524
SAP Reference IMG 473
SAPscript 76, 525
Scheduling 452
Scheduling parameters 451
Scores 313
Scoring 311
Scrap 294
Screen display 106
Search 105
Search help 105
Selected set 158
Selection set 347
Serial number 253, 261, 436, 441, 525
Serialization 436
Service 309, 316
Session 112
Shewhart chart 266, 326
Ship to stock 247
Shopfloor complaint 312
Skip 247, 305, 329
Solution database 386
SPC 78, 168, 323
inspection 279
Stability study 63, 66, 389
Stability test 391, 396
Standard 20
analysis 322, 409
development 266, 325
distribution 327
menu 99
plan 153, 525
toolbar 101
Statistical process control 323
Statistics 265
Statistics program, external 292
Status 110, 249, 257, 445
Status bar 104
Stock 294
unrestricted-use 246
Stock overview 119
Stock type 246, 526
Storage conditions 396
Storage location 526
Strategic Enterprise Management 526
Subcriteria 309, 311
Subject 358
Subsystem 284, 458
Summarized 260
Supply Chain Management 122, 526
System status 248, 359

T
Task planning 357
Task-list assignment 258
Task-list group 183
Task-list usage 183
Tasks 353
Technical completion 522
Technical information 108
Technical names 111
Test 72
Test equipment 87, 198, 278, 284, 429
management 429
manager 87
monitoring 429
Testing 515
Testing schedule 398
Title bar 101
Training 72
Transaction 501, 526
code 110
type 247
Transport
automatic 481
manual 481
Transport request 474

U
Unit of inspection 264
Usage decision 293, 301, 396
automatic 300
change 304
in materials management 305
in production 305
in sales and distribution 304
User master record 154
User menu 99
User name 97
User profiles 108
User roles 99
User settings 97, 108
User status 249, 359

V
Valuation mode 232
Value, classed 260
Variable check 526
Vendor 308, 526
Vendor data 117
Vendor evaluation 307, 315, 415
display 317
maintain 316
Vendor fault list 356, 364, 383
Vendor master record 151, 308, 526
Vendor statistics 411
Views 438

W
Warehouse management 127
Warehouse stock 119
Warnings 104
Web Application Server 80
Weighting 309
Weighting factor 311
Weighting key 310, 320
Window
modal 117
modeless 117
Work center 75, 153, 526
Workflow 367
Worklist 255
Workplace 82
Works test certificate 277